簡易檢索 / 詳目顯示

研究生: 吳宗穎
Zong-Ying Wu
論文名稱: 網路移動架構中以Fast Handover for Mobile IPv6為基礎之改良式換手機制
Enhanced Fast Handover for Mobile IPv6 in Network Mobility Architecture
指導教授: 楊舜仁
Shun-Ren Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 44
中文關鍵詞: 網路行動網路行動
外文關鍵詞: mobile IPv6, FMIPv6, network mobility, mobile IPv6, network mobility, FMIPv6
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • IETF組織提出Mobile IPv6 (MIPv6) 協定支援一行動節點在IPv6網路上的移動管理. 然而, 支援MIPv6的行動節點在換手的過程中會有很長的handover latency以至於無法支援多媒體服務, 例如VoIP. 因此IETF組織提出Fast handover for Mobile IPv6 (FMIPv6)來解決此問題. 可是在network mobility (NEMO)的環境中, 我們發現FMIPv6會失去其原有的效果, 更可能造成更久的handover latency, 更多的packet loss以及更長的packet delay. 故我們提出一enhanced fast handover for mobile IPv6 (E-FMIPv6)解決行動節點在network mobility環境中因為FMIPv6所造成的問題.在此篇論文中, 我們以數學分析方式對FMIPv6, E-FMIPv6以及MIPv6在NEMO環境進行分析. 在數值的結果中可發現, 因為本論文所提出之方法會使得封包再轉送的過程中會是一個optimal的路徑因此E-FMIPv6的效果會比FMIPv6以及MIPv6來的好.


    The Internet Engineering Task Force (IETF) offers the mobile IPv6 (MIPv6) to support the mobility management of the MN. However, mobile nodes supporting the MIPv6 suffer from long handover latency and can not support real-time multimedia service such as VoIP. The IETF offers the Fast Handover for Mobile IPv6 (FMIPv6) to solve the problem. However, in the network mobility (NEMO) architecture, we find that in some situations FMIPv6 may lose its strengths, and even incur longer handover latency. We propose a
    solution called enhanced fast handover for mobile IPv6 (E-FMIPv6) and utilize the mathematical analysis scheme to analyze the performance of the E-FMIPv6 in NEMO architecture. The numerical results show that the E-FMIPv6 improves the performance of the MN's handover in the NEMO architecture. To compare with the traditional FMIPv6, the E-FMIPv6 improves the packet delay and the handover latency in the predictive mode and improves the packet loss and packet delay in reactive mode. To compare with the MIPv6, the E-FMIPv6 can improve the handover latency, packet loss and packet delay in predictive mode and improve packet loss and packet delay in reactive mode.

    Contents Abstract.................................................iii List of Figures...........................................vi 1 Introduction.............................................1 2 Related Work.............................................4 2.1 Overview...............................................4 2.2 Prefix Delegation Scheme...............................4 2.3 SIP-Based Scheme.......................................6 3 Network Mobility (NEMO)..................................9 3.1 NEMO Architecture......................................9 3.2 NEMO Basic Support Protocol...........................11 4 Fast Handovers for Mobile IPv6 (FMIPv6).................15 4.1 Overview..............................................15 4.2 Predictive Mode.......................................17 4.3 Reactive Mode.........................................20 5 Problems Statement and Proposed Solutions...............23 5.1 Problems Statement....................................23 5.2 Proposed Solutions....................................27 5.2.1 Overview............................................27 5.2.2 Enhanced Fast Handover for Mobile IPv6..............28 5.2.3 Modification of IP Tunnel Scheme....................29 6 Performance Evaluation..................................32 6.1 Handover Latencies....................................32 6.2 Packet Loss...........................................35 6.3 Packet Delay..........................................36 6.4 Numerical results.....................................38 7 Conclusions.............................................42 Bibliography..............................................43

    [1] Banerjee, N.,WuW., Das S., Dawkins S. And Pathak J. Mobility Support inWireless Internet. IEEE Wireless Commun., 10(5):54–61, Oct. 2002.
    [2] Devarapalli, V., Wakikawa, R., Petrescu, A., And Thubert, P. Network Mobility (NEMO) Basic Support Protocol. RFC 3963, January 2005.
    [3] Handley, M., Schulzrinne H. Schooler E. And Roseberg J. SIP: Session Initiation Protocol. RFC 2543, March 1999.
    [4] Huang, C.M.,Lee, C.H., And Zheng, J.R. A Novel SIP-Based Route Optimization for Network Mobility. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 24(9), SEPTEMBER 2006.
    [5] Johnson, D., Perkins, C., And Arkko, J. Mobility Support in IPv6. RFC 3775, June 2004.
    [6] KAFLE, P.V., KAMIOKA E. And YAMADA S. CoMoRoHo: Cooperative Mobile Router-Based Handover Scheme for Long-Vehicular Multihomed Networks. IEICE TRANS. COMMUN., E89-B(10), Oct. 2006.
    [7] Koodli, R. Fast Handovers for Mobile IPv6. RFC 4068, July 2005.
    [8] Kuo, G.S. And Ji K. Mobile IPv6 Extensions to Support Nested Mobile Network. International Conference on AINA, 1:488–491, 2004.
    [9] Lee, K.J.,Park, J., And Kim, H. Route Optimization for Mobile Nodes in Mobile Network based on Prefix Delegation. IEEE Proc. VTC 2003, pages 2035–2038, Oct. 2003.
    [10] Ng, C.,Thubert, P., Watari, M., Zhao, F. And Davise, U.C. Network Mobility Route Optimization Problem Statement. Internet Draft, April 2006.
    [11] Perera, E., Sivaraman, V., And Seneviratne, A. Survey on Network Mobility Support. ACM Mobile Computing and Commun. Review, 8(2):7–19, April 2004.
    [12] Shin, S., Forte A., Rawat A.S. And Schulzrine H. Reduceing MAC Layer Handover Latency in IEEE802.11 Wireless LANs. Proc. ACM MobiWac 2004, pages 19–26, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE