簡易檢索 / 詳目顯示

研究生: 黃詠勝
論文名稱: 鋅鐵氧化物修飾硒硫化鎘奈米棒光觸媒於 可見光驅動光催化分解水產氫之研究
ZnFe2O4 Decorated CdS1-xSex Nanorods in Visible-light Driven Photocatalytic Water Splitting for Hydrogen Production
指導教授: 呂世源
口試委員: 吳紀聖
李岱洲
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 99
中文關鍵詞: 硒硫化鎘分解水產氫異質結構鋅鐵氧化物能隙控制
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以光觸媒催化產氫,有三個重要的步驟,第一是吸收入射光的能量產生電子電洞對,第二是電子電洞遷移至光觸媒表面,最後分別產生還原與氧化反應。其中重要的關鍵有二:光觸媒具有適合的能帶結構吸收入射光,和電子電洞對的分離效率。此兩者將影響光觸媒的效能甚鉅。
    本研究以製備硒硫化鎘奈米棒(CdS1-xSex nanorods)為主體材料,再搭配附在奈米棒外部的鋅鐵氧化物ZnFe2O4形成異質結構複合材料。最核心的構想是希望能藉由硒元素的摻入調控光觸媒的能隙,再加上鋅鐵氧化物自身磁性可回收的特性,而這樣的異質結構且能帶位置匹配使得產氫效率提升、減少光腐蝕,使產氫長效性穩定。之後的檢測再利用UV-visible、XRD、BET、XPS、SEM、PL、TEM分別檢測光觸媒之光吸收特性、觸媒晶相、比表面積、元素比例、形貌、放光特性以及粒徑大小,藉以進一步分析討論。
    光觸媒使用熱溶劑法製備,以丙二胺為溶劑攝氏190度持溫24小時反應,成功合成出硒硫化鎘奈米棒,根據XRD和UV-visible吸收光譜的檢測,可以證實硒元素成功摻入硒硫化鎘奈米棒內,得以調控光觸媒半導體的能隙。在複合之後的樣品也通過磁性的檢測,能順利用磁鐵將分散在水中的樣品蒐集起來。
    固體懸浮法產氫的研究設備為內照式反應系統,使用的犧牲試劑是亞硫酸鈉搭配硫化鈉,反應器的外部以1M的亞硝酸鈉溶液,過濾紫外光,於400W 高壓汞燈照射下,將0.05克光觸媒分散於500毫升犧牲試劑溶液進行反應。硒硫化鎘奈米棒的產氫效果隨著硒元素的增加而上升,但在硒的元素比例到達30%之後產氫速率增加的現象消失甚至有下降。在複合之後的材料,目前最佳的產氫速率是20wt%鋅鐵氧化物複合10%硒硫化鎘奈米棒,其產氫速率在複合前後由40.63(μ mol hr-1)升至99.73(μ mol hr-1)。
    這是由於鋅鐵氧化物和硒硫化鎘能帶結構匹配,光生電子會從鋅鐵氧化物傳導至硒硫化鎘的導帶位置進行還原反應,電洞則從硒硫化鎘的價帶傳導至鋅鐵氧化物的價帶,再與水溶液或是犧牲試劑發生氧化反應,因而達到增進電子電洞分離的效果,使產氫速率提升。在產氫的長效穩定性測試,20wt%鋅鐵氧化物複合10%硒硫化鎘奈米棒經歷35小時長效產氫共七次的循環測試,平均產氫速率維持在99.67(μ mol hr-1)的數值,第七次的產氫效率依然保有103(μ mol hr-1),可見其具備長效產氫穩定性。


    摘要 I Abstract III 總目錄 V 圖目錄 VII 表目錄 XII 第一章 緒論 1 1-1前言 1 1-2本多 藤島效應(Honda-Fujishima effect) 2 1-3光催化水分解原理 3 1-4 電子電洞對的分離 5 1-4-1 犧牲試劑的作用 6 1-5 光催化水分解裝置 7 1-6 研究動機 9 第二章 文獻回顧 10 2-1可見光光觸媒發展 10 2-2不同能隙半導體異質接面觸媒 16 2-3鋅鐵氧化物的結構 20 2-3-1鋅鐵氧化物用於光催化反應 20 2-4硫化鎘(CdS)的光催化分解水產氫應用 27 2-5硒硫化鎘的光催化分解水產氫應用 34 第三章 實驗方法與儀器原理 44 3-1 實驗藥品 44 3-2 實驗器材 46 3-3 分析儀器 47 3-4光觸媒製備 51 3-4-1硫化鎘奈米棒製備 51 3-4-2硒硫化鎘奈米棒製備 51 3-4-3鋅鐵氧化物複合硒硫化鎘奈米棒製備 51 3-4-4觸媒代號整理 52 3-5光觸媒產氫儀器設置與分析 53 3-5-1 懸浮式光照反應器 54 3-5-2光源頻譜之測定 56 第四章 結果與討論 58 4-1硒硫化鎘奈米棒 58 4-1-1硒硫化鎘基本物性鑑定 58 4-1-2硒硫化鎘光催化分解水效率 75 4-2鋅鐵氧化物複合硒硫化鎘 77 4-2-1鋅鐵氧化物複合硒硫化鎘基本物性鑑定 77 4-2-2鋅鐵氧化物複合硒硫化鎘光催化分解水效率 85 第五章 結論 92 第六章 參考文獻 94

    [1] 呂錫民,“能源科技與政策的發展”科學發展, 2011
    [2] 左峻德,“走向低碳運輸:台灣綠色燃料與載具發展前景”財團法人台灣經濟研究院, 2013
    [3] 徐偉竣,“微量鈀添加改善鎂基儲氫材料之性質研究 ”國立清華大學材料科學工程學系碩士論文, 2005
    [4] A. Fujishima, K. Honda,“Electrochemical Photolysis of Water at a Semiconductor Electrode ”Nature, 1972, 238, 37
    [5] A. Fujishima, X. Zhang and D. A. Tryk,“Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup ”Int. J. Hydrogen Energy, 2007, 32, 2664.
    [6] M. Grätzel,“Photoelectrochemical cells”Nature, 2001, 414, 338
    [7] X. Li, J. Zhua and H. Li“Comparative study on the mechanism in photocatalytic degradation of different-type organic dyes on SnS2 and CdS” Appl. Catal., B, 2012, 123-124, 174
    [8] A. Kudo and Y. Miseki,“Heterogeneous photocatalyst materials for water splitting”Chem. Soc. Rev., 2009, 38, 253
    [9] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri,and J. Ye ,“Nano-photocatalytic Materials: Possibilities andChallenges”Adv. Mater., 2012, 24, 229
    [10] K. J. Chao, W. Y. Cheng, T. H. Yu and S. Y. Lu,“Large enhancements in hydrogen production of TiO2 through a simple carbon decoration” Carbon, 2013, 62, 69
    [11] H. Lv, L. Ma, P. Zeng, D. Ke and T. Peng,“Synthesis of floriated ZnFe2O4 with porous nanorod structures anditsphotocatalytic hydrogen production under visible light”J. Mater. Chem. , 2010, 20, 3665
    [12] Y. C. Pu, G. Wang, K. D. Chang, Y. Ling, Y. K. Lin, B. C. Fitzmorris, C. M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y. J. Hsu and Y. Li“Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for Photoelectrochemical Water Splitting”Nano Lett. , 2013, 13, 3817
    [13] D. K. Zhong, J. Sun, H. Inumaru and D. R. Gamelin“Solar Water Oxidation by Composite Catalyst/α-Fe2O3 Photoanodes” J. Am. Chem. Soc., 2009, 131, 6086
    [14] M. J. Berr, F. F. Schweinberger and M. Doblinger, K. E. Sanwald, C. Wolff, J. Breimeier, A. S. Crampton, C. J. Ridge, M. Tschurl, U. Heiz, F. Jackel and J. Feldmann,“Size-Selected Subnanometer Cluster Catalysts on Semiconductor Nanocrystal Films for Atomic Scale Insight into Photocatalysis”Nano Lett., 2012, 12, 5903
    [15] Y. Sasaki, H. Kato and A. Kudo,“ [Co(bpy)(3)](3+2+) and [Co(phen)(3)](3+2+) Electron Mediators for Overall Water Splitting under Sunlight Irradiation Using Z-Scheme Photocatalyst System”J. Am. Chem. Soc., 2013, 135, 5441
    [16] A, Galinska and J, Walendziewski,“Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents”Energy Fuels, 2005, 19, 1143
    [17] A. Kudo, K. Domen, K. Maruya and T. Onishi,“Photocatalytic activities of TiO2 loaded with NiO”Chem. Phys. Lett., 1987, 133, 517
    [18] 林佳潔,“二氧化鈦氣凝膠在光催化分解水產氫之應用”國立清華大學化學工程學系碩士論文, 2010
    [19] S. Ouyang and J. Ye,“β-AgAl1-xGaxO2 Solid-Solution Photocatalysts Continuous Modulation of Electronic Structure toward High-Performance Visible-Light Photoactivity”J. Am. Chem. Soc., 2011, 133, 7757
    [20] A. Mukherji, R. Marschall, A. Tanksale, C. Sun, S. C. Smith, G. Q. Lu and L. Wang,“N-Doped CsTaWO6 as a New Photocatalyst for Hydrogen Production from Water Splitting Under Solar Irradiation”Adv. Funct. Mater., 2011, 21, 126
    [21] A. Mukherji, C. Sun, S. C Smith, G. Q. Lu and L. Wang,“Photocatalytic Hydrogen Production from Water Using N-Doped Ba5Ta4O15 under Solar Irradiation” J. Phys. Chem. C, 2011, 115, 15674
    [22] S. M. Thalluri, C. M. Suarez, S. Hernandez , S. Bensaid, G. Saracco and N. Russo “Elucidation of important parameters of BiVO4 responsible for photo-catalytic O2 evolution and insights about the rate of the catalytic process” Chem. Eng. J.,2014, 245, 124
    [23]Y. Shimodaira, H. Kato, H. Kobayashi and A. Kudo,“Photophysical Properties and Photocatalytic Activities of Bismuth Molybdates under Visible Light Irradiation”J. Phys.Chem. B, 2006, 110, 17790
    [24] W. Yin, W. Wang and S. Sun,“Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation”Catal. Commun., 2010, 11, 647
    [25] K. Lee, B. M. Tienes, M. B. Wilker, K. J. Schnitzenbaumer and G. Dukovic,“(Ga1-xZnx)(N1-xOx) nanocrystals visible absorbers with tunable composition and absorption spectra”Nano Lett., 2012, 12, 3268
    [26] M. Yoshida, K. Maeda, D. Lu, J. Kubota and K. Domen,“ Lanthanoid Oxide Layers on Rhodium-Loaded (Ga1−xZnx)(N1−xOx) Photocatalyst as a Modifier for Overall Water Splitting under Visible-Light Irradiation” J. Phys. Chem. C, 2013, 117, 14000
    [27] W. D. Zhang and L. Zhu“Construction of Hierarchical Nanostructured TiO2/Bi2MoO6 Heterojunction for Improved Visible Light Photocatalysis” J. Nanosci. Nanotechnol., 2012, 12, 6294
    [28] T. H. Yu, W.Y. Cheng, K. J. Chao and S. Y. Lu“ZnFe2O4 decorated CdS nanorods as a highly efficient,visible light responsive, photochemically stable,magnetically recyclable photocatalyst for hydrogen generation”Nanoscale, 2013, 5, 7356
    [29] S. Xu, D. Feng and W. Shangguan,“Preparations and Photocatalytic Properties of Visible-Light-Active Zinc Ferrite-Doped TiO2 Photocatalyst” J. Phys. Chem. C, 2009, 113, 2463
    [30] Y. Fu and X. Wang,“Magnetically Separable ZnFe2O4–Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation”Ind. Eng. Chem. Res., 2011, 50, 7210
    [31] H. Lv, L. Ma, P. Zeng, D. Ke and T. Peng,“Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light” J. Mater. Chem., 2010, 20, 3665
    [32] S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab and M. Trari,“Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3” Appl. Energ., 2010, 87, 2230
    [33] Y. V. Pleskov and Y. Y. Gurevich, Semiconductor Photoelectrochemistry, P. N. Bartlett, Plenum, New York, 1986
    [34] V. M. Daskalaki, M. Antoniadou, G. L. Puma, D. I. Kondarides and P. Lianos, “Solar Light-Responsive Pt/CdS/TiO2 Photocatalysts for Hydrogen Production and Simultaneous Degradation of Inorganic or Organic Sacrificial Agents in Wastewater”Environ. Sci. Technol., 2010, 44, 7200
    [35] J. S. Jang, U. A. Joshi and J. S. Lee, “Solvothermal Synthesis of CdS Nanowires for Photocatalytic Hydrogen and Electricity Production”J. Phys. Chem. C, 2007, 111, 13280
    [36] Y. Chen, L. Wang, G. Lu, X. Yao and L. Guo,“Nanoparticles enwrapped with nanotubes: A unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water” J. Mater. Chem., 2011, 21, 5134
    [37] J. Hou, Z. Wang, W. Kan, S. Jiao, H. Zhu and R. V. Kumar“Efficient visible-light-driven photocatalytic hydrogen production using CdS@TaON core–shell composites coupled with graphene oxide nanosheets” J. Mater. Chem., 2012, 22, 7291
    [38] Z. X. Deng, L. Li and Y. Li“Novel Inorganic−Organic-Layered Structures  Crystallographic Understanding of Both Phase and Morphology Formations of One-Dimensional CdE (E = S, Se, Te) Nanorods in Ethylenediamine”Inorg. Chem., 2003, 42, 2331
    [39] X. Huang, J. Li, Y. Zhang and A. Mascarenhas“From 1D Chain to 3D Network  Tuning Hybrid II-VI Nanostructures and Their Optical Properties”J. Am. Chem. Soc., 2003, 125, 7049
    [40] T. Uchihara, H. Abe, M. Matsumura and H. Tsubomura“Photocatalytic Hydrogen Evolution From Aqueous-solutions of Sodiun-sulfite Using Platinum-Loaded CdS1-xSexMixed-Crystal Powder” Bull. Chem. Soc. Jpn., 1989,62,1042
    [41] M. R. Kim, S. Y. Park and D. J. Jang“Facile Controlled Synthesis and Spectroscopy of CdS1-xSex Alloy and (CdS)(1-x)@(CdSe)(x) Core-Shell Nanotetrapods” Adv. Funct. Mater., 2009 ,19, 3910
    [42] S. R. Lingampalli, Ujjal K. Gautam and C. N. R. Rao“Highly efficient photocatalytic hydrogen generation by solution-processed ZnOPtCdS, ZnOPtCd1−xZnxS and ZnOPtCdS1−xSex hybrid”Energy Environ. Sci, 2013,6, 3589
    [43] 余宗軒“具磁性可回收之可見光應答光觸媒於光催化分解水產氫之研究”,國立清華大學化學工程學系碩論, 2011
    [44] T. Thongtem, A. Phuruangrat and S. Thongtem,“Solvothermal production of CdS nanorods using polyvinylpyrrolidone as a template” Cryst. Res. Technol., 2009, 44, 865
    [45] P. K. Santra, R. Viswanatha, S. M. Daniels, N. L. Pickett, J. M. Smith, P. O’Brien, and D. D. Sarma“Investigation of the Internal Heterostructure of Highly Luminescent Quantum Dot-Quantum Well Nanocrystals”J. Am. Chem. Soc., 2009, 131, 470
    [46] J. W. Kim, H. S. Shim, S. W. Ko, U. Jeong, C. L. Lee and W. B. Kim“Thorny CdSe nanotubes via an aqueous anion exchange reaction process and their photoelectrochemical applications”J. Mater. Chem., 2012, 22, 20889
    [47] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Inc., Eden Prairie, 1995
    [48] J. Luo, L. Ma, T. He, C. F. Ng, S. Wang, H. Sun and H. J. Fan“TiO2/(CdS, CdSe, CdSeS) Nanorod Heterostructures andPhotoelectrochemical Properties”J. Phys. Chem. C, 2012, 116, 11956

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE