研究生: |
龍司南 Long, Jane SiNan |
---|---|
論文名稱: |
緻密脈衝雙星系統的多信使研究 Multi-messenger studies of compact millisecond pulsar binaries |
指導教授: |
江國興
Kong, Albert 胡建華 Wu, Kinwah |
口試委員: |
李君樂
Li, Kwan-Lok 潘國全 Pan, Kuo-Chuan 楊湘怡 Yang, Hsiang-Yi Karen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 天文研究所 Institute of Astronomy |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 76 |
中文關鍵詞: | 中子星 、脈衝雙星系統 、重力波 |
外文關鍵詞: | Neutron star, millisecond pulsar binary, gravitational waves |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
緻密脈衝雙星系統(cbMSP)是由快速旋轉的中子星(NS)和低質量的伴星所
組成的,且它們的軌道週期小於24小時。在本論文中,我們採用多信使方法研究這
類系統的兩個方面:
(i)我們報告了迄今為止觀測到的最緻密cbMSP系統, PSR J1653-0158,
的X射線和伽馬射線觀測結果,其軌道周期為75分鐘。我們擬合了XMM-
Newton和NuSTAR X射線光譜,並顯示可以通過在軌道內衝擊波加速的電子的
同步輻射來解釋它,以及由Fermi測量的伽馬射線是脈衝星磁層中電子和正電子的
曲率輻射。我們對cbMSP PSRJ1653-0158和PSRJ1311-3430進行了運動學分析,表
明這兩個系統可能起源於銀盤。
(ii)我們提出了一種利用多信使觀測資訊進行質量確定的方法。在這項研究
中,我們專注於一類cbMSP系統,其軌道周期小於1小時,可以被LISA探測到的引
力波源。通過結合從光學觀測獲得的雙星質量函數和從引力波觀測獲得的補充質量
函數,我們演示了如何對中子星質量進行改進的約束,並打破質量和軌道傾斜度的
簡並現象。
Compact millisecond pulsar binaries (cbMSP) are extreme systems that consist of
a fast spinning neutron star (NS) and a low mass companion star with short orbital
period less than 24 hours. We use an multi-messenger approach to study two aspects
of such systems in this thesis:
(i) We report X-ray and gamma-ray observations of the most compact cbMSP
record to date PSR J1653-0158, which orbital period is 75-minute. We fit the joint
XMM-Newton and NuSTAR X-ray spectrum and showed that it can be explained by
synchrotron radiation from electrons accelerated in the intra-binary shock, and the
gamma-rays measured by Fermi are curvature radiations from electrons and positrons
in the pulsar magnetosphere. Our kinematic analysis of the cbMSP PSR J1653{0158
and PSR J1311{3430 indicates that the two systems are likely to have originated from
the Galactic Disk.
(ii) We propose a mass determination method utilising multi-messenger observational
information. In this study we focus on a subset of cbMSP systems with
orbital periods shorter than 1 hour, that are gravitational wave sources detectable
by LISA. By combining the binary mass function obtained from optical observations
and a complementary mass function derived from gravitational wave observations, we
demonstrate how we can set improved constraints on the neutron star mass and break
the degeneracy in the mass and viewing inclination determination.
[1] E. N. Parker.\Acceleration of Cosmic Rays in Solar Flares". In: Physical Review
107.3 (Aug. 1957), pp. 830{836. doi: 10.1103/PhysRev.107.830.
[2] R. Davis, D. S. Harmer, and K. C. Homan. \Search for Neutrinos from the
Sun". In: 20.21 (May 1968), pp. 1205{1209. doi: 10.1103/PhysRevLett.20.
1205.
[3] K. Hirata, T. Kajita, et al. \Observation of a neutrino burst from the supernova
SN1987A". In: 58.14 (Apr. 1987), pp. 1490{1493. doi: 10.1103/PhysRevLett.
58.1490.
[4] B. P. Abbott, R. Abbott, et al. \GW170817: Observation of Gravitational
Waves from a Binary Neutron Star Inspiral". In: 119.16, 161101 (Oct. 2017),
p. 161101. doi: 10.1103/PhysRevLett.119.161101. arXiv: 1710.05832 [gr-
qc].
[5] A. K. H. Kong, R. Jin, et al. \Discovery of an Ultracompact Gamma-Ray
Millisecond Pulsar Binary Candidate". In: 794.2, L22 (Oct. 2014), p. L22. doi:
10.1088/2041-8205/794/2/L22. arXiv: 1408.5162 [astro-ph.HE].
[6] R. W. Romani, A. V. Filippenko, and S. B. Cenko.\2FGL J1653.6-0159: A New
Low in Evaporating Pulsar Binary Periods". In: 793.1, L20 (Sept. 2014), p. L20.
doi: 10.1088/2041-8205/793/1/L20. arXiv: 1408.2886 [astro-ph.HE].
[7] L. Nieder, C. J. Clark, et al. \Discovery of a Gamma-Ray Black Widow Pulsar
by GPU-accelerated Einstein@Home". In: 902.2, L46 (Oct. 2020), p. L46. doi:
10.3847/2041-8213/abbc02. arXiv: 2009.01513 [astro-ph.HE].
[8] J. M. Lattimer and M. Prakash.\Neutron star observations: Prognosis for equation
of state constraints". In: 442.1-6 (Apr. 2007), pp. 109{165. doi: 10.1016/
j.physrep.2007.02.003. arXiv: astro-ph/0612440 [astro-ph].
[9] R. W. Romani, D. Kandel, et al. “PSR J0952-0607: The Fastest and Heaviest
Known Galactic Neutron Star”. In: 934.2, L18 (Aug. 2022), p. L18. doi: 10.
3847/2041-8213/ac8007. arXiv: 2207.05124 [astro-ph.HE].
[10] C. J. Clark, M. Kerr, et al. “Neutron star mass estimates from gamma-ray
eclipses in spider millisecond pulsar binaries”. In: Nature Astronomy (Jan.
2023). doi: 10 . 1038 / s41550 - 022 - 01874 - x. arXiv: 2301 . 10995 [astro-
ph.HE].
[11] J. Antoniadis, P. C. C. Freire, et al.“A Massive Pulsar in a Compact Relativistic
Binary”. In: Science 340.6131 (Apr. 2013), p. 448. doi: 10.1126/science.
1233232. arXiv: 1304.6875 [astro-ph.HE].
[12] P. Podsiadlowski, N. Langer, et al. “The Effects of Binary Evolution on the
Dynamics of Core Collapse and Neutron Star Kicks”. In: 612.2 (Sept. 2004),
pp. 1044–1051. doi: 10.1086/421713. arXiv: astro-ph/0309588 [astro-ph].
[13] J. Iben I. and A. V. Tutukov. “On the evolution of close binaries with compo-
nents of initial mass between 3 M and 12 M.” In: 58 (Aug. 1985), pp. 661–710.
doi: 10.1086/191054.
[14] D. Bhattacharya and E. P. J. van den Heuvel. “Formation and evolution of
binary and millisecond radio pulsars”. In: 203.1-2 (Jan. 1991), pp. 1–124. doi:
10.1016/0370-1573(91)90064-S.
[15] P. C. C. Freire and T. M. Tauris. “Direct formation of millisecond pulsars
from rotationally delayed accretion-induced collapse of massive white dwarfs”.
In: 438.1 (Feb. 2014), pp. L86–L90. doi: 10 . 1093 / mnrasl / slt164. arXiv:
1311.3478 [astro-ph.SR].
[16] C. Y. Hui, K. S. Cheng, and R. E. Taam. “Dynamical Formation of Millisecond
Pulsars in Globular Clusters”. In: 714.2 (May 2010), pp. 1149–1154. doi: 10.
1088/0004-637X/714/2/1149. arXiv: 1003.4332 [astro-ph.HE]
[17] T. M. Tauris. “Disentangling Coalescing Neutron-Star-White-Dwarf Binaries
for LISA”. In: 121.13, 131105 (Sept. 2018), p. 131105. doi: 10.1103/PhysRevLett.
121.131105. arXiv: 1809.03504 [astro-ph.SR].
[18] W.-C. Chen, D.-D. Liu, and B. Wang. “Detectability of Ultra-compact X-Ray
Binaries as LISA Sources”. In: 900.1, L8 (Sept. 2020), p. L8. doi: 10.3847/
2041-8213/abae66. arXiv: 2008.05143 [astro-ph.HE].
[19] H.-L. Chen, X. Chen, et al. “Formation of Black Widows and Redbacks—Two
Distinct Populations of Eclipsing Binary Millisecond Pulsars”. In: 775.1, 27
(Sept. 2013), p. 27. doi: 10.1088/0004-637X/775/1/27. arXiv: 1308.4107
[astro-ph.SR].
[20] R. H. H. Huang, A. K. H. Kong, et al. “X-Ray Studies of the Black Widow
Pulsar PSR B1957+20”. In: 760.1, 92 (Nov. 2012), p. 92. doi: 10.1088/0004-
637X/760/1/92. arXiv: 1209.5871 [astro-ph.HE].
[21] R. W. Romani, M. L. Graham, et al. “PSR J1301+0833: A Kinematic Study of
a Black-widow Pulsar”. In: 833.2, 138 (Dec. 2016), p. 138. doi: 10.3847/1538-
4357/833/2/138.
[22] A. R. King, M. B. Davies, and M. E. Beer. “Black widow pulsars: the price
of promiscuity”. In: 345.2 (Oct. 2003), pp. 678–682. doi: 10.1046/j.1365-
8711.2003.06990.x. arXiv: astro-ph/0307023 [astro-ph].
[23] A. R. King, M. E. Beer, et al. “The population of black widow pulsars”. In:
358.4 (Apr. 2005), pp. 1501–1504. doi: 10.1111/j.1365-2966.2005.08877.x.
arXiv: astro-ph/0502511 [astro-ph].
[24] O. Y. Gnedin and J. P. Ostriker. “Destruction of the Galactic Globular Cluster
System”. In: 474.1 (Jan. 1997), pp. 223–255. doi: 10 . 1086 / 303441. arXiv:
astro-ph/9603042 [astro-ph].
[25] F. A. Harrison, W. W. Craig, et al. “The Nuclear Spectroscopic Telescope Array
(NuSTAR) High-energy X-Ray Mission”. In: 770.2, 103 (June 2013), p. 103.
doi: 10.1088/0004-637X/770/2/103. arXiv: 1301.7307 [astro-ph.IM].
[26] J. N. Reeves, M. J. L. Turner, et al. “The first XMM-Newton spectrum of a
high redshift quasar - PKS 0537-286”. In: 365 (Jan. 2001), pp. L116–L121. doi:
10.1051/0004-6361:20000423. arXiv: astro-ph/0010367 [astro-ph].
[27] N. A. Webb and D. Barret. “Constraining the Equation of State of Supranuclear
Dense Matter from XMM-Newton Observations of Neutron Stars in Globular
Clusters”. In: 671.1 (Dec. 2007), pp. 727–733. doi: 10.1086/522877. arXiv:
0708.3816 [astro-ph].
[28] W. B. Atwood, A. A. Abdo, et al. “The Large Area Telescope on the Fermi
Gamma-Ray Space Telescope Mission”. In: 697.2 (June 2009), pp. 1071–1102.
doi: 10.1088/0004-637X/697/2/1071. arXiv: 0902.1089 [astro-ph.IM].
[29] B. P. Abbott, R. Abbott, et al. “Gravitational Waves and Gamma-Rays from
a Binary Neutron Star Merger: GW170817 and GRB 170817A”. In: 848.2, L13
(Oct. 2017), p. L13. doi: 10.3847/2041- 8213/aa920c. arXiv: 1710.05834
[astro-ph.HE].
[30] S. Abdollahi, F. Acero, et al. “Fermi Large Area Telescope Fourth Source Cat-
alog”. In: The Astrophysical Journal Supplement Series 247.1 (2020), p. 33.
doi: 10.3847/1538-4365/ab6bcb. url: https://doi.org/10.3847/1538-
4365/ab6bcb.
[31] I. Iben, A. V. Tutukov, and A. V. Fedorova. “On the Evolution of Low-Mass X-
Ray Binaries under the Influence of a Donor Stellar Wind Induced by X-Rays
from the Accretor”. In: 486.2 (Sept. 1997), pp. 955–986. doi: 10.1086/304533.
[32] K. Jia and X. D. Li. “Formation of Millisecond Pulsars with Low-mass Helium
White Dwarf Companions in Very Compact Binaries”. In: 791.2, 127 (Aug.
2014), p. 127. doi: 10 . 1088 / 0004 - 637X / 791 / 2 / 127. arXiv: 1407 . 3150
[astro-ph.HE].
[33] C. Y. Hui, K. Wu, et al. “On the Orbital Properties of Millisecond Pulsar
Binaries”. In: 864.1, 30 (Sept. 2018), p. 30. doi: 10.3847/1538-4357/aad5ec.
arXiv: 1807.09001 [astro-ph.HE].
34] P. D. Kiel and R. E. Taam. “Accretion, ablation and propeller evolution in
close millisecond pulsar binary systems”. In: 348.2 (Dec. 2013), pp. 441–458.
doi: 10.1007/s10509-013-1573-4. arXiv: 1308.0898 [astro-ph.SR].
[35] W. Kluzniak, M. Ruderman, et al. “Nature and evolution of the eclipsing mil-
lisecond binary pulsar PSR1957 + 20”. In: 334.6179 (July 1988), pp. 225–227.
doi: 10.1038/334225a0.
[36] E. S. Phinney, C. R. Evans, et al. “Ablating dwarf model for eclipsing millisec-
ond pulsar 1957 + 20”. In: 333.6176 (June 1988), pp. 832–834. doi: 10.1038/
333832a0.
[37] M. Ruderman, J. Shaham, and M. Tavani. “Accretion Turnoff and Rapid Evap-
oration of Very Light Secondaries in Low-Mass X-Ray Binaries”. In: 336 (Jan.
1989), p. 507. doi: 10.1086/167029.
[38] C.-A. Faucher-Gigu`ere and V. M. Kaspi. “Birth and Evolution of Isolated Radio
Pulsars”. In: 643.1 (May 2006), pp. 332–355. doi: 10 . 1086 / 501516. arXiv:
astro-ph/0512585 [astro-ph].
[39] J. Takata, K. S. Cheng, and R. E. Taam. “X-Ray and Gamma-Ray Emissions
from Rotation Powered Millisecond Pulsars”. In: 745.1, 100 (Jan. 2012), p. 100.
doi: 10.1088/0004-637X/745/1/100. arXiv: 1111.3451 [astro-ph.HE].
[40] N. R. Lomb. “Least-Squares Frequency Analysis of Unequally Spaced Data”.
In: 39.2 (Feb. 1976), pp. 447–462. doi: 10.1007/BF00648343.
[41] J. D. Scargle. “Studies in astronomical time series analysis. II. Statistical as-
pects of spectral analysis of unevenly spaced data.”In: 263 (Dec. 1982), pp. 835–
853. doi: 10.1086/160554.
[42] C. Y. Hui, S. M. Park, et al. “Searches for Millisecond Pulsar Candidates among
the Unidentified Fermi Objects”. In: 809.1, 68 (Aug. 2015), p. 68. doi: 10.1088/
0004-637X/809/1/68. arXiv: 1507.02604 [astro-ph.HE].
[43] A. K. Kong, J. Takata, et al. “Broad-band high-energy emissions of the
redback millisecond pulsar PSR J2129-0429”. In: 478.3 (Aug. 2018), pp. 3987–
3993. doi: 10.1093/mnras/sty1459. arXiv: 1806.01312 [astro-ph.HE].
[44] C. O. Heinke, G. B. Rybicki, et al. “A Hydrogen Atmosphere Spectral Model
Applied to the Neutron Star X7 in the Globular Cluster 47 Tucanae”. In: 644.2
(June 2006), pp. 1090–1103. doi: 10.1086/503701. arXiv: astro-ph/0506563
[astro-ph].
[45] J. M. Lattimer and M. Prakash. “Neutron Star Structure and the Equation
of State”. In: 550.1 (Mar. 2001), pp. 426–442. doi: 10.1086/319702. arXiv:
astro-ph/0002232 [astro-ph].
[46] B. P. Abbott, R. Abbott, et al. “GW170817: Measurements of Neutron Star
Radii and Equation of State”. In: 121.16, 161101 (Oct. 2018), p. 161101. doi:
10.1103/PhysRevLett.121.161101. arXiv: 1805.11581 [gr-qc].
[47] G. B. Rybicki and A. P. Lightman. Radiative Processes in Astrophysics. 1986.
[48] A. R. Bell. “The acceleration of cosmic rays in shock fronts - I.” In: 182 (Jan.
1978), pp. 147–156. doi: 10.1093/mnras/182.2.147.
[49] A. Achterberg, Y. A. Gallant, et al. “Particle acceleration by ultrarelativistic
shocks: theory and simulations”. In: 328.2 (Dec. 2001), pp. 393–408. doi: 10.
1046/j.1365-8711.2001.04851.x. arXiv: astro-ph/0107530 [astro-ph].
[50] K. S. Cheng, C. Ho, and M. Ruderman. “Energetic Radiation from Rapidly
Spinning Pulsars. I. Outer Magnetosphere Gaps”. In: 300 (Jan. 1986), p. 500.
doi: 10.1086/163829.
[51] J. Dyks and B. Rudak. “Two-Pole Caustic Model for High-Energy Light Curves
of Pulsars”. In: 598.2 (Dec. 2003), pp. 1201–1206. doi: 10.1086/379052. arXiv:
astro-ph/0303006 [astro-ph].
[52] K. P. Watters, R. W. Romani, et al. “An Atlas for Interpreting γ-Ray Pulsar
Light Curves”. In: 695.2 (Apr. 2009), pp. 1289–1301. doi: 10 . 1088 / 0004 -
637X/695/2/1289. arXiv: 0812.3931 [astro-ph].
[53] K. L. Li, A. K. H. Kong, et al. “NuSTAR Observations and Broadband Spectral
Energy Distribution Modeling of the Millisecond Pulsar Binary PSR J1023+0038”.
In: 797.2, 111 (Dec. 2014), p. 111. doi: 10.1088/0004-637X/797/2/111. arXiv:
1410.4563 [astro-ph.HE].
[54] Y. Wang, J. Takata, and K. S. Cheng. “Three-dimensional two-layer outer gap
model: Fermi energy-dependent light curves of the Vela pulsar”. In: 414.3 (July
2011), pp. 2664–2673. doi: 10.1111/j.1365- 2966.2011.18577.x. arXiv:
1102.4474 [astro-ph.HE].
[55] I. A. Grenier and A. K. Harding. “Gamma-ray pulsars: A gold mine”. In:
Comptes Rendus Physique 16.6-7 (Aug. 2015), pp. 641–660. doi: 10 . 1016 /
j.crhy.2015.08.013. arXiv: 1509.08823 [astro-ph.HE].
[56] P. Draghis and R. W. Romani. “PSR J0636+5128: A Heated Companion in
a Tight Orbit”. In: 862.1, L6 (July 2018), p. L6. doi: 10.3847/2041-8213/
aad2db. arXiv: 1807.04249 [astro-ph.HE].
[57] L. M. van Haaften, G. Nelemans, et al. “Formation of the planet around the
millisecond pulsar J1719-1438”. In: 541, A22 (May 2012), A22. doi: 10.1051/
0004-6361/201218798. arXiv: 1203.2919 [astro-ph.SR].
[58] R. W. Romani, A. V. Filippenko, and S. B. Cenko. “A Spectroscopic Study of
the Extreme Black Widow PSR J1311-3430”. In: 804.2, 115 (May 2015), p. 115.
doi: 10.1088/0004-637X/804/2/115. arXiv: 1503.05247 [astro-ph.HE].
[59] R. Spiewak, M. Bailes, et al. “PSR J2322-2650 - a low-luminosity millisecond
pulsar with a planetary-mass companion”. In: 475.1 (Mar. 2018), pp. 469–477.
doi: 10.1093/mnras/stx3157. arXiv: 1712.04445 [astro-ph.HE].
[60] P. Draghis, R. W. Romani, et al. “Multiband Optical Light Curves of Black-
widow Pulsars”. In: 883.1, 108 (Sept. 2019), p. 108. doi: 10 . 3847 / 1538 -
4357/ab378b. arXiv: 1908.00992 [astro-ph.HE].
[61] D. Kandel, R. W. Romani, and H. An. “The Synchrotron Emission Pattern
of Intrabinary Shocks”. In: 879.2, 73 (July 2019), p. 73. doi: 10.3847/1538-
4357/ab24d9. arXiv: 1905.12591 [astro-ph.HE].
[62] J. T. A. de Jong, B. Yanny, et al. “MAPPING THE STELLAR STRUCTURE
OF THE MILKY WAY THICK DISK AND HALO USING SEGUE PHO-
TOMETRY”. In: The Astrophysical Journal 714.1 (2010), pp. 663–674. doi:
10.1088/0004-637x/714/1/663. url: https://doi.org/10.1088/0004-
637x/714/1/663.
[63] M. Juri ́c, ˇZ. Ivezi ́c, et al. “The Milky Way Tomography with SDSS. I. Stellar
Number Density Distribution”. In: 673.2 (Feb. 2008), pp. 864–914. doi: 10.
1086/523619. arXiv: astro-ph/0510520 [astro-ph].
[64] F. Eisenhauer, R. Sch ̈odel, et al. “A Geometric Determination of the Distance
to the Galactic Center”. In: 597.2 (Nov. 2003), pp. L121–L124. doi: 10.1086/
380188. arXiv: astro-ph/0306220 [astro-ph].
[65] C. Francis and E. Anderson. “Two estimates of the distance to the Galactic
Centre”. In: 441.2 (June 2014), pp. 1105–1114. doi: 10.1093/mnras/stu631.
arXiv: 1309.2629 [astro-ph.GA].
[66] J. P. Vall ́ee. “Recent advances in the determination of some Galactic constants
in the Milky Way”. In: 362.4, 79 (Apr. 2017), p. 79. doi: 10.1007/s10509-
017-3058-3. arXiv: 1703.05822 [astro-ph.GA].
[67] T. Camarillo, V. Mathur, et al. “Median Statistics Estimate of the Distance to
the Galactic Center”. In: 130.984 (Feb. 2018), p. 024101. doi: 10.1088/1538-
3873/aa9b26. arXiv: 1708.01310 [astro-ph.GA].
[68] E. Griv, M. Gedalin, et al. “The Sun’s distance from the Galactic Centre
and mid-plane, and the Galactic old bulge’s morphology: 715 VVV Type II
Cepheids”. In: 502.3 (Apr. 2021), pp. 4194–4198. doi: 10.1093/mnras/stab321.
[69] M. Zoccali and E. Valenti. “The 3D Structure of the Galactic Bulge”. In: 33,
e025 (June 2016), e025. doi: 10 . 1017 / pasa . 2015 . 56. arXiv: 1601 . 02839
[astro-ph.GA].
[70] C. Y. Hui and K. L. Li. “High Energy Radiation from Spider Pulsars”. In:
Galaxies 7.4 (Dec. 2019), p. 93. doi: 10.3390/galaxies7040093. arXiv: 1912.
06988 [astro-ph.HE].
[71] H.-W. Rix and J. Bovy. “The Milky Way’s stellar disk. Mapping and modeling
the Galactic disk”. In: 21, 61 (May 2013), p. 61. doi: 10.1007/s00159-013-
0061-8. arXiv: 1301.3168 [astro-ph.GA].
[72] W. E. Harris. “A Catalog of Parameters for Globular Clusters in the Milky
Way”. In: 112 (Oct. 1996), p. 1487. doi: 10.1086/118116.
[73] J. Bovy. “galpy: A python Library for Galactic Dynamics”. In: 216.2, 29 (Feb.
2015), p. 29. doi: 10.1088/0067-0049/216/2/29. arXiv: 1412.3451 [astro-
ph.GA].
[74] Y. Sofue. “Rotation and mass in the Milky Way and spiral galaxies”. In: 69.1,
R1 (Feb. 2017), R1. doi: 10.1093/pasj/psw103. arXiv: 1608.08350 [astro-
ph.GA].
[75] K. Stovall, R. S. Lynch, et al. “The Green Bank Northern Celestial Cap Pulsar
Survey. I. Survey Description, Data Analysis, and Initial Results”. In: 791.1,
67 (Aug. 2014), p. 67. doi: 10.1088/0004-637X/791/1/67. arXiv: 1406.5214
[astro-ph.HE].
[76] R. Spiewak, D. L. Kaplan, et al. “ORDINARY X-RAYS FROM THREE EX-
TRAORDINARY MILLISECOND PULSARS:XMM-NEWTONOBSERVATIONS
OF PSRs J03371715, J06365129, AND J06455158”. In: The Astrophysical Jour-
nal 822.1 (2016), p. 37. doi: 10.3847/0004- 637x/822/1/37. url: https:
//doi.org/10.3847/0004-637x/822/1/37.
[77] D. L. Kaplan, K. Stovall, et al. “A Dense Companion to the Short-period Mil-
lisecond Pulsar Binary PSR J0636+5128”. In: 864.1, 15 (Sept. 2018), p. 15.
doi: 10.3847/1538-4357/aad54c. arXiv: 1807.04610 [astro-ph.HE].
[78] S. Guillot, M. Kerr, et al.“NICER X-Ray Observations of Seven Nearby Rotation-
powered Millisecond Pulsars”. In: The Astrophysical Journal 887.1 (2019),
p. L27. doi: 10 . 3847 / 2041 - 8213 / ab511b. url: https : / / doi . org / 10 .
3847/2041-8213/ab511b.
[79] H. An, R. W. Romani, et al. “High-energy Variability of PSR J1311-3430”.
In: The Astrophysical Journal 850.1 (2017), p. 100. doi: 10 . 3847 / 1538 -
4357/aa947f. url: https://doi.org/10.3847/1538-4357/aa947f.
[80] R. W. Romani, A. V. Filippenko, et al. “PSR J1311–3430: A HEAVYWEIGHT
NEUTRON STAR WITH A FLYWEIGHT HELIUM COMPANION”. In: The
Astrophysical Journal 760.2 (2012), p. L36. doi: 10.1088/2041-8205/760/2/
l36. url: https://doi.org/10.1088/2041-8205/760/2/l36.
[81] P. B. Demorest, T. Pennucci, et al. “A two-solar-mass neutron star measured
using Shapiro delay”. In: 467.7319 (Oct. 2010), pp. 1081–1083. doi: 10.1038/
nature09466. arXiv: 1010.5788 [astro-ph.HE].
[82] E. Fonseca, H. T. Cromartie, et al. “Refined Mass and Geometric Measurements
of the High-mass PSR J0740+6620”. In: 915.1, L12 (July 2021), p. L12. doi:
10.3847/2041-8213/ac03b8. arXiv: 2104.00880 [astro-ph.HE].
[83] N. K. Glendenning and J. Schaffner-Bielich. “Kaon Condensation and Dynam-
ical Nucleons in Neutron Stars”. In: 81.21 (Nov. 1998), pp. 4564–4567. doi:
10.1103/PhysRevLett.81.4564. arXiv: astro-ph/9810284 [astro-ph].
[84] B. D. Lackey, M. Nayyar, and B. J. Owen. “Observational constraints on hy-
perons in neutron stars”. In: 73.2, 024021 (Jan. 2006), p. 024021. doi: 10 .
1103/PhysRevD.73.024021. arXiv: astro-ph/0507312 [astro-ph].
[85] A. Li, Z. Miao, et al. “Constraints on the Maximum Mass of Neutron Stars with
a Quark Core from GW170817 and NICER PSR J0030+0451 Data”. In: 913.1,
27 (May 2021), p. 27. doi: 10.3847/1538-4357/abf355. arXiv: 2103.15119
[astro-ph.HE].
[86] J. M. Lattimer and M. Prakash. “The Physics of Neutron Stars”. In: Science
304.5670 (Apr. 2004), pp. 536–542. doi: 10.1126/science.1090720. arXiv:
astro-ph/0405262 [astro-ph].
[87] S. S. Avancini, D. P. Menezes, et al. “Warm and cold pasta phase in relativistic
mean field theory”. In: 78.1, 015802 (July 2008), p. 015802. doi: 10 . 1103 /
PhysRevC.78.015802.
[88] G. Baym, T. Hatsuda, et al. “From hadrons to quarks in neutron stars: a
review”. In: Reports on Progress in Physics 81.5, 056902 (May 2018), p. 056902.
doi: 10.1088/1361-6633/aaae14. arXiv: 1707.04966 [astro-ph.HE].
[89] H. Tan, T. Dore, et al. “Extreme matter meets extreme gravity: Ultraheavy
neutron stars with phase transitions”. In: 105.2, 023018 (Jan. 2022), p. 023018.
doi: 10.1103/PhysRevD.105.023018. arXiv: 2106.03890 [astro-ph.HE].
[90] S. Yu, Y. Lu, and C. S. Jeffery. “Orbital evolution of neutron-star-white-dwarf
binaries by Roche lobe overflow and gravitational wave radiation”. In: 503.2
(May 2021), pp. 2776–2790. doi: 10.1093/mnras/stab626. arXiv: 2103.01884
[astro-ph.HE].
[91] H.-L. Chen, T. M. Tauris, et al. “Formation of millisecond pulsars with helium
white dwarfs, ultra-compact X-ray binaries, and gravitational wave sources”.
In: 503.3 (May 2021), pp. 3540–3551. doi: 10.1093/mnras/stab670. arXiv:
2103.02931 [astro-ph.SR].
[92] H.-L. Chen, T. M. Tauris, et al. “Investigating the Stability of Mass Transfer in
Neutron Star-helium White Dwarf Binaries”. In: 930.2, 134 (May 2022), p. 134.
doi: 10.3847/1538-4357/ac6608
[93] P. Amaro-Seoane, H. Audley, et al. “Laser Interferometer Space Antenna”. In:
arXiv e-prints, arXiv:1702.00786 (Feb. 2017), arXiv:1702.00786. arXiv: 1702.
00786 [astro-ph.IM].
[94] T. B. Littenberg, N. J. Cornish, et al. LDASoft. free software (GPL). 2020.
doi: 10.5281/zenodo.2026177.
[95] M. Maggiore. Gravitational Waves: Volume 1: Theory and Experiments. Vol. 1.
Oxford University Press, 2008.
[96] L. S. Finn and K. S. Thorne. “Gravitational waves from a compact star in
a circular, inspiral orbit, in the equatorial plane of a massive, spinning black
hole, as observed by LISA”. In: 62.12, 124021 (Dec. 2000), p. 124021. doi:
10.1103/PhysRevD.62.124021. arXiv: gr-qc/0007074 [gr-qc].
[97] ́E. ́E. Flanagan and S. A. Hughes. “Measuring gravitational waves from binary
black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown”.
In: 57.8 (Apr. 1998), pp. 4535–4565. doi: 10.1103/PhysRevD.57.4535. arXiv:
gr-qc/9701039 [gr-qc].
[98] C. J. Moore, R. H. Cole, and C. P. L. Berry. “Gravitational-wave sensitivity
curves”. In: Classical and Quantum Gravity 32.1, 015014 (Jan. 2015), p. 015014.
doi: 10.1088/0264-9381/32/1/015014. arXiv: 1408.0740 [gr-qc].
[99] T. Robson, N. J. Cornish, and C. Liu. “The construction and use of LISA
sensitivity curves”. In: Classical and Quantum Gravity 36.10, 105011 (May
2019), p. 105011. doi: 10 . 1088 / 1361 - 6382 / ab1101. arXiv: 1803 . 01944
[astro-ph.HE].
[100] T. B. Littenberg and N. J. Cornish. “Prospects for Gravitational Wave Mea-
surement of ZTF J1539+5027”. In: 881.2, L43 (Aug. 2019), p. L43. doi: 10.
3847/2041-8213/ab385f. arXiv: 1908.00678 [astro-ph.IM].
[101] M. H. van Kerkwijk, R. P. Breton, and S. R. Kulkarni. “Evidence for a Massive
Neutron Star from a Radial-velocity Study of the Companion to the Black-
widow Pulsar PSR B1957+20”. In: 728.2, 95 (Feb. 2011), p. 95. doi: 10.1088/
0004-637X/728/2/95. arXiv: 1009.5427 [astro-ph.HE].
[102] R. W. Romani, A. V. Filippenko, and S. B. Cenko. “A Spectroscopic Study of
the Extreme Black Widow PSR J1311-3430”. In: 804.2, 115 (May 2015), p. 115.
doi: 10.1088/0004-637X/804/2/115. arXiv: 1503.05247 [astro-ph.HE].
[103] K. B. Burdge, T. R. Marsh, et al. “A 62-minute orbital period black widow
binary in a wide hierarchical triple”. In: 605.7908 (May 2022), pp. 41–45. doi:
10.1038/s41586-022-04551-1. arXiv: 2205.02278 [astro-ph.HE].
[104] T. Wagg, F. S. Broekgaarden, et al. “Gravitational wave sources in our Galactic
backyard: Predictions for BHBH, BHNS and NSNS binaries detectable with
LISA”. In: arXiv e-prints, arXiv:2111.13704 (Nov. 2021), arXiv:2111.13704.
arXiv: 2111.13704 [astro-ph.HE].
[105] I. Mandel, A. Sesana, and A. Vecchio. “The astrophysical science case for a
decihertz gravitational-wave detector”. In: Classical and Quantum Gravity 35.5,
054004 (Mar. 2018), p. 054004. doi: 10 . 1088 / 1361 - 6382 / aaa7e0. arXiv:
1710.11187 [astro-ph.HE].
[106] G. Wang, W.-T. Ni, et al. “Numerical simulation of sky localization for LISA-
TAIJI joint observation”. In: 102.2, 024089 (July 2020), p. 024089. doi: 10.
1103/PhysRevD.102.024089. arXiv: 2002.12628 [gr-qc].
[107] Astropy Collaboration, A. M. Price-Whelan, et al. “The Astropy Project: Sus-
taining and Growing a Community-oriented Open-source Project and the Lat-
est Major Release (v5.0) of the Core Package”. In: 935.2, 167 (Aug. 2022),
p. 167. doi: 10.3847/1538-4357/ac7c74. arXiv: 2206.14220 [astro-ph.IM].
[108] A. Lewis. “GetDist: a Python package for analysing Monte Carlo samples”. In:
arXiv e-prints, arXiv:1910.13970 (Oct. 2019), arXiv:1910.13970. arXiv: 1910.
13970 [astro-ph.IM].
[109] T. B. Littenberg, N. J. Cornish, et al. “Global analysis of the gravitational wave
signal from Galactic binaries”. In: 101.12, 123021 (June 2020), p. 123021. doi:
10.1103/PhysRevD.101.123021. arXiv: 2004.08464 [gr-qc].
[110] R. W. Romani, A. V. Filippenko, et al. “PSR J1311-3430: A Heavyweight
Neutron Star with a Flyweight Helium Companion”. In: 760.2, L36 (Dec. 2012),
p. L36. doi: 10.1088/2041- 8205/760/2/L36. arXiv: 1210.6884 [astro-
ph.HE].
[111] C. Bochenek, S. Ransom, and P. Demorest. “The Feasibility of Using Black
Widow Pulsars in Pulsar Timing Arrays for Gravitational Wave Detection”.
In: 813.1, L4 (Nov. 2015), p. L4. doi: 10.1088/2041-8205/813/1/L4. arXiv:
1509.06662 [astro-ph.HE].
[112] A.-S. Bak Nielsen, G. H. Janssen, et al. “Timing stability of three black widow
pulsars”. In: 494.2 (May 2020), pp. 2591–2599. doi: 10.1093/mnras/staa874.
arXiv: 2003.10352 [astro-ph.HE].
[113] E. van der Wateren, C. G. Bassa, et al. “Irradiated but not eclipsed, the case
of PSR J0610−2100”. In: 661, A57 (May 2022), A57. doi: 10 . 1051 / 0004 -
6361/202142741. arXiv: 2203.05872 [astro-ph.HE].
[114] D. Li, P. Wang, et al. “FAST in Space: Considerations for a Multibeam, Mul-
tipurpose Survey Using China’s 500-m Aperture Spherical Radio Telescope
(FAST)”. In: IEEE Microwave Magazine 19.3 (Apr. 2018), pp. 112–119. doi:
10.1109/MMM.2018.2802178. arXiv: 1802.03709 [astro-ph.IM].
[115] J. L. Han, C. Wang, et al. “The FAST Galactic Plane Pulsar Snapshot survey:
I. Project design and pulsar discoveries”. In: Research in Astronomy and As-
trophysics 21.5, 107 (June 2021), p. 107. doi: 10.1088/1674-4527/21/5/107.
arXiv: 2105.08460 [astro-ph.HE].
[116] P. Wang, D. Li, et al. “FAST discovery of an extremely radio-faint millisec-
ond pulsar from the Fermi-LAT unassociated source 3FGL J0318.1+0252”. In:
Science China Physics, Mechanics, and Astronomy 64.12, 129562 (Dec. 2021),
p. 129562. doi: 10.1007/s11433-021-1757-5. arXiv: 2109.00715 [astro-
ph.HE].
[117] R. P. Breton, M. H. van Kerkwijk, et al. “Discovery of the Optical Counterparts
to Four Energetic Fermi Millisecond Pulsars”. In: 769.2, 108 (June 2013), p. 108.
doi: 10.1088/0004-637X/769/2/108. arXiv: 1302.1790 [astro-ph.HE].
[118] Y. Yap, A. Kong, and K.-L. Li. “A light redback companion of PSR J1622`0315
and irradiation power in spider systems”. submitted to ApJ. 2022.
[119] Z. Wadiasingh, C. Venter, et al. “Pressure Balance and Intrabinary Shock Sta-
bility in Rotation-powered-state Redback and Transitional Millisecond Pulsar
Binary Systems”. In: 869.2, 120 (Dec. 2018), p. 120. doi: 10 . 3847 / 1538 -
4357/aaed43. arXiv: 1810.12958 [astro-ph.HE].