簡易檢索 / 詳目顯示

研究生: 徐雍鎣
Yung-Jung Hsu
論文名稱: 金屬與半導體奈米材料於氣相沈積程序中之控制成長
Controlled Growth of Metal and Semiconductor Nanomaterials in Vapor-Deposition Processes
指導教授: 呂世源
Shih-Yuan Lu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 167
中文關鍵詞: 奈米材料氣相沈積一維奈米結構核殼結構三元合金
外文關鍵詞: nanomaterials, vapor-deposition, one-dimensional nanostructures, core-shell structures, ternary alloys
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以氣相沈積系統來製備半導體與金屬材料之多種奈米結構,其中包含(CdS)ZnS核殼粒子薄膜、CdS奈米線、同軸核殼CdS-ZnS奈米線、三元Cd1-xZnxS合金奈米線、Sn奈米線、Sn奈米方塊、Sn奈米碟片與Sn奈米粒子等。同時研究與討論這些材料於奈米尺度、特殊結構與複合組成下所展現之相關性質。藉由同時導入兩種具反應性差異之單源先驅物(single-source precursors)於有機金屬氣相沈積系統(metal-organic chemical vapor deposition, MOCVD)中,成功地於單一步驟下製備出(CdS)ZnS之(核)殼奈米粒子薄膜,殼層之ZnS所具有的表面去活化(surface passivation)作用可大幅改善核心CdS之螢光量子產率(quantum yields)。當添加硝酸銀於成長CdS之MOCVD系統中時,添加物的導入能夠有效地增加CdS之整體沈積速率與其螢光量子產率,而所沈積之CdS其表面型態與結構亦會有所改變。藉由蒸氣-液滴-固體(vapor-liquid-solid, VLS)之成長機制,於MOCVD系統中成功地於低沈積溫度下製備出CdS之一維奈米線,CdS奈米線之螢光量子產率會隨著奈米線長度的變長而降低,而當奈米線直徑縮小時其量子產率則有升高的現象;此外,於CdS之一維奈米結構之頂端區域,首度發現由CdS與觸媒金屬形成之固溶體(solid solution)所造成的陡峭螢光發光波段。於同時導入具有反應性差異之單源先驅物於MOCVD系統中,經由VLS之成長機制於單一步驟中製備出同軸核殼之CdS-ZnS奈米線,由殼層ZnS所帶來之表面去活化作用可以有效地提升CdS奈米線之螢光量子產率;經由適當地調控MOCVD之反應條件,成功地於單一步驟下合成出三元合金Cd1-xZnxS奈米線,合金奈米線展現出不同於CdS與ZnS所具有之光學性質。最後,於無觸媒與無模版輔助之氣相沈積系統中,同時製備出Sn之多種奈米結構,包括奈米線、奈米方塊、奈米碟片與奈米粒子薄膜等;其中,三種具非等向形狀之結構(奈米線、奈米方塊與奈米碟片)所展現的超導相之工作磁場範圍,相較於Sn之塊材與奈米粒子,有著非常顯著之增加。這些Sn的沈積物於結構上之多元性則源自於Sn晶體中各個晶面間於成長速率上的相互競爭所致。


    The present research focuses on the synthesis of semiconductor and metal nanomaterials in a variety of structures via the gas-phase based deposition processes. These materials included (CdS)ZnS core-shell particle films, CdS nanowires, coaxial core-shell CdS-ZnS nanowires, ternary Cd1-xZnxS alloy nanowires, Sn nanowires, Sn nanosquares, Sn nanodisks, and Sn nanoparticles. The relevant properties of the synthesized nano-sized materials with different structures and compositions were also investigated and discussed. By using two co-fed single source precursors of sufficient reactivity difference, we successfully prepared the core-shell (CdS)ZnS particle films with a one-step MOCVD process. The photoluminescence (PL) quantum yield enhancement achieved by the effective passivation of CdS core by ZnS shell was observed. An additive, silver nitrate (AgNO3), was used to prepare nanostructured films of CdS via a MOCVD process. The effect of AgNO3 addition in enhancing the deposition rate and PL efficiency of CdS deposit was demonstrated. It was also observed that morphology change can be induced through additive addition. We successfully developed a low-temperature VLS process for preparation of one-dimensional (1-D) nanostructure of CdS. The PL quantum yield of CdS nanowires was found to decrease with increasing wire length, but to increase with decreasing wire diameter. Besides, a narrow PL emission peak resulting from the formation of CdS-catalyst metal solid solution at the tip region of CdS nanostructures was observed. By co-feeding two single source precursors of sufficient reactivity difference, we successfully prepared coaxial CdS-ZnS nanowires with a one-step MOCVD process through the VLS growth mechanism. The PL quantum yield enhancement achieved by the effective passivation of CdS by ZnS was also observed in 1-D coaxial nanostructures. By appropriately adjusting the reaction conditions in the one-step MOCVD process, ternary Cd1-xZnxS alloy nanowires were successfully synthesized. Different optical properties from those of CdS and ZnS were observed in Cd1-xZnxS nanowires. A non-catalytic and template-free vapor transport process was developed to prepare various nanostructures of Sn, including nanowires, nanosquares, and nanodisks, and nanoparticles, in a single run of operation. The three anisotropically shaped nanostructures (nanowires, nanosquares, and nanodisks) showed a significant enhancement in working magnetic field ranges for superconductivity as compared to those of bulk Sn and the Sn nanoparticles. The formation of such a rich morphology may be attributed to the competition in growth rate among different crystallographic planes of Sn.

    總目錄 摘要 ABSTRACT 誌謝 總目錄 圖目錄 第一章 諸論 第二章 實驗內容 2-1 實驗藥品 2-2 實驗設備 2-3 實驗器材 2-4 分析儀器 第三章 以化學氣相沈積法製備硫化鎘/硫化鋅複合奈米粒子薄膜 3-1 前言 3-2 實驗與方法 3-2.1 合成單源先驅物 3-2.2 以MOCVD程序製備(ZnS)CdS與(CdS)ZnS粒子薄膜 3-2.3 量子產率 3-3 結果與討論 3-3.1 單源先驅物的反應性 3-3.2 (ZnS)CdS複合粒子薄膜 3-3.3 (CdS)ZnS複合粒子薄膜 3-3.4 CdS與ZnS之固溶體結構 3-3.5 間續式成長ZnS/CdS與CdS/ZnS粒子薄膜 3-3.6 成長機制 3-3.7 先驅物之『反應性』、『成核性』與『吸附能力』 3-3.8 複合粒子薄膜之表面型態 3-4 結論 第四章 添加物效應之於硫化鎘粒子薄膜的成長 4-1 前言 4-2 實驗與方法 4-3 結果與討論 4-3.1 添加物於結構上的影響 4-3.2 添加物於光學性質的影響 4-3.3 反應機制 4-4 結論 第五章 一維奈米材料之簡介 5-1 前言 5-2 製備一維奈米材料之方法 5-2.1 氣相法 5-2.2 液相法 5-2.3 模版輔助法 5-2.4 其它合成方式 5-3 其它型態之一維奈米結構 5-3.1 同軸核殼結構 5-3.2 超晶格結構 5-3.3 帶型或其它形狀之一維奈米結構 5-4 結論 第六章 硫化鎘奈米線之低溫製備與其光發光行為 6-1 前言 6-2 實驗與方法 6-2.1以MOCVD程序製備CdS一維奈米線 6-2.2 製備金粒子薄膜 6-3 結果與討論 6-3.1 奈米線軸向尺寸(長度)的改變 6-3.2 奈米線徑向尺寸(直徑)的改變 6-3.3 VLS機制之詳細說明 6-3.4 奈米線與觸媒金屬粒子之固溶體 6-4 結論 第七章 單一步驟製備同軸核殼與三元合金半導體奈米線 7-1 前言 7-2 實驗與方法 7-3 結果與討論 7-3.1 CdS-ZnS核殼奈米線 7-3.2 間續式成長CdS/ZnS複合奈米線 7.3-3 Cd1-xZnxS三元合金奈米線 7.3-4 成長機制 7-4 結論 第八章 錫奈米線之製備與成長機制 8-1 前言 8-2 實驗與方法 8-3 結果與討論 8-3.1 Sn奈米線 8-3.2 Sn奈米線之成長機制 8-3.3 Sn奈米方塊 8-4 結論 第九章 錫之各種奈米結構與其超導特性 9-1 前言 9-2 實驗與方法 9-3 結果與討論 9-3.1 Sn的四種奈米結構 9-3.2 成長機制 9-3.3 蒸發溫度的影響 9-3.4 超導性質 9-4 結論 第十章 總結與未來展望 參考文獻 個人簡歷

    [1] T. Hirai, S. Shiojiri, I. Komasawa, J. Chem. Eng. Jan. 1994, 27, 590.
    [2] R. D. Pike, H. Cui, R. Kershaw, K. Dwight, A. Wold, Thin Solid Films 1993, 224, 221.
    [3] H. Uda, H. Yonezawa, Y. Ohtsubo, M. Kosaka, H. Sonomura, Sol. Energy Mater. Sol. Cells 2003, 75, 219.
    [4] J. Cheon, J. I. Zink, J. Am. Chem. Soc. 1997, 119, 3838.
    [5] J. Huang, P. Lianos, Langmuir 1998, 14, 4342.
    [6] M. Nyman, K. Jenkins, M. J. Hampden-Smith, T. T. Kodas, E. N. Duesler, Chem. Mater. 1998, 10, 914.
    [7] U. Pal, R. Silva-González, G. Martínez-Montes, M. Gracia-Jiménez, M. A. Vidal, S. Torres, Thin Solid Films 1997, 305, 345.
    [8] P. Taneja, P. Vasa, P. Ayyub, Mater. Lett. 2002, 54, 343.
    [9] P. O’Brien, J. R. Walsh, I. M. Watson, L. Hart, S. R. P. Silva, J. Cryst. Growth 1996, 167, 133.
    [10] M. Motevalli, P. O’Brien, J. R. Walsh, I. M. Watson, Polyhedron 1996, 15, 2801.
    [11] D. S. Boyle, P. O’Brien, D. J. Otway, O. Robbe, J. Mater. Chem. 1999, 9, 725.
    [12] B. E. Boone, C. Shannon, J. Phys. Chem. 1996, 100, 9480.
    [13] F. Zhenyi, C. Yichao, H. Yongliang, Y. Yaoyuan, D. Yanping, Y. Zewu, T. Hongchang, X. Hongtao, W. Heming, J. Cryst. Growth 2002, 237, 1707.
    [14] C.-T. Hsu, J. Cryst. Growth 2000, 208, 259.
    [15] S.-Y. Lu, S.-W. Chen, J. Am. Ceram. Soc. 2000, 83, 709.
    [16] Hitachi Scientific Instrument Technical Data, FL No. 24.
    [17] 吳美玲, 2002, “以含有可聚合型界面活性劑之逆微胞溶液製備硫化鎘/硫化鋅核殼之高分子奈米複合材料及其特性檢測,” 國立清華大學化學工程學系碩士論文, 台灣.
    [18] S.-Y. Lu, M.-L. Wu, H.-L. Chen, J. Appl. Phys. 2003, 93, 5789.
    [19] E. Hao, H. Sun, Z. Zhou, J. Liu, B. Yang, J. Shen, Chem. Mater. 1999, 11, 3096.
    [20] M. Nirmal, L. Brus, Acc. Chem. Res. 1999, 32, 407.
    [21] S. L. Cumberland, K. M. Hanif, A. Javier, G. A. Khitrov, G. F. Strouse, S. M. Woessner, C. S. Yun, Chem. Mater. 2002, 14, 1576.
    [22] S.-H. Wei, A. Zunger, Appl. Phys. Lett. 1998, 72, 2011.
    [23] A. D. Yoffe, Advances in Physics 2001, 50, 1.
    [24] L. X. Zheng, H. Yang, D. P. Xu, X. J. Wang, X. F. Li, J. B. Li, Y. T. Wang, L. H. Duan, X. W. Hu, Thin Solid Films 1998, 326, 251.
    [25] T. Takahashi, Y. Egashira, H. Komiyama, Appl. Phys. Lett. 1995, 66, 2858.
    [26] A. P. Alivisatos, J. Phys. Chem. 1996, 100, 13226.
    [27] L. E. Brus, R. Rossetti, J. Chem. Phys. 1984, 80, 4464.
    [28] A. A. Talin, K. A. Dean, J. E. Jaskie, Solid-State Electronics 2001, 45, 963.
    [29] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Appl. Phys. Lett. 1999, 75, 3129.
    [30] H. Y. Peng, Z. W. Pan, L. Xu, X. H. Fan, N. Wang, C.-S. Lee, S.-T. Lee, Adv. Mater. 2001, 13, 317.
    [31] Y. Wu, P. Yang, Adv. Mater. 2001, 13, 520.
    [32] E. W. Wong, P. E. Sheehan, C. M. Leiber, Science 1997, 277, 1971.
    [33] P. Poncharal, Z. L. Wang, D. Ugarte, W. A. de Heer, Science 1999, 283, 1513.
    [34] J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, C. M. Lieber, Science 2001, 293, 1455.
    [35] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 2001, 292, 1897.
    [36] H. King, H. Yan, B. Messer, M. Law, P. Yang, Adv. Mater. 2002, 14, 158.
    [37] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353.
    [38] Y. Zhang, N. Wang, S. Gao, R. He, S. Miao, J. Liu, J. Zhu, X. Zhang, Chem. Mater. 2002, 14, 3564.
    [39] R.-Q. Zhang, Y. Lifshitz, S.-T. Lee, Adv. Mater. 2003, 15, 635.
    [40] X. Jiang, T. Herricks, Y. Xia, Nano Lett. 2002, 2, 1333.
    [41] Y. Wu, P. Yang, J. Am. Chem. Soc. 2001, 123, 3165.
    [42] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 2001, 13, 113.
    [43] X. Duan, J. Wang, C. M. Lieber, Appl. Phys. Lett. 2000, 76, 1116.
    [44] M. S. Gudiksen, C. M. Lieber, J. Am. Chem. Soc. 2000, 122, 8801.
    [45] M. S. Gudiksen, J. Wang, C. M. Lieber, J. Phys. Chem. B 2001, 105, 4062.
    [46] H. Dai, Acc. Chem. Res. 2002, 35, 1035.
    [47] E. P. A. M. Bakkers, M. A. Verheijen, J. Am. Chem. Soc. 2003, 125, 3440.
    [48] T. Hanrath, B. A. Korgel, Adv. Mater. 2003, 15, 437.
    [49] D.-F. Zhang, L.-D. Sun, J.-L. Yin, C.-H. Yan, Adv. Mater. 2003, 15, 1022.
    [50] B. D. Busbee, S. O. Obare, C. J. Murphy, Adv. Mater. 2003, 15, 414.
    [51] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, Nature 2000, 404, 59.
    [52] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, Chem. Mater. 2002, 14, 4736.
    [53] J. S. Suh, J. S. Lee, Appl. Phys. Lett. 1999, 75, 2047.
    [54] J. Li, C. Papadopoulos, J. M. Xu, M. Moskovits, Appl. Phys. Lett. 1999, 75, 367.
    [55] S.-H. Jeong, O.-J. Lee, K.-H. Lee, S.-H. Oh, C.-G. Park, Chem. Mater. 2002, 14, 1859.
    [56] S.-Z. Chu, K. Wada, S. Inoue, S.-i. Todoroki, Chem. Mater. 2002, 14, 266.
    [57] D. Xu, X. Shi, G. Guo, L. Gui, Y. Tang, J. Phys. Chem. B 2000, 104, 5061.
    [58] S. Y. Jeong, Y. Jeong, J. Y. Kim, H. D. Yang, B. N. Yoon, S.-H. Choi, H. K. Kang, C. W. Yang, Y. H. Lee, Adv. Mater. 2003, 15, 1172.
    [59] K.-B. Lee, S.-M. Lee, J. Cheon, Adv. Mater. 2001, 13, 517.
    [60] Y. Xiong, Y. Xie, C. Wu, J. Yang, Z. Li, F. Xu, Adv. Mater. 2003, 15, 405.
    [61] J. Wang, Y. Li, Adv. Mater. 2003, 15, 445.
    [62] L. Huang, H. Wang, Z. Wang, A. Mitra, K. N. Bozhilov, Y. Yan, Adv. Mater. 2002, 14, 61.
    [63] Y.-Y. Yu, S.-S. Chang, C.-L. Lee, C. R. C. Wang, J. Phys. Chem. B 1997, 101, 6661.
    [64] B. Gates, B. Mayers, B. Cattle, Y. Xia, Adv. Funct. Mater. 2002, 12, 219.
    [65] W. I. Park, D. H. Kim, S.-W. Jung, G.-C. Yi, Appl. Phys. Lett. 2002, 80, 4232.
    [66] Q. Xu, L. Zhang, J. Zhu, J. Phys. Chem. B 2003, 107, 8294.
    [67] L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Nature 2002, 420, 57.
    [68] H.-M. Lin, Y.-L. Chen, J. Yang, Y.-C. Liu, K.-M. Yin, J.-J. Kai, F.-R. Chen, L.-C. Chen, Y.-F. Chen, C.-C. Chen, Nano Lett. 2003, 3, 537.
    [69] D. J. Pena, J. K. N. Mbindyo, A. J. Carado, T. E. Mallouk, C. D. Keating, B. Razavi, T. S. Mayer, J. Phys. Chem. B 2002, 106, 7458.
    [70] Y. Wu, R. Fan, P. Yang, Nano Lett. 2002, 2, 83.
    [71] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 2001, 291, 1947.
    [72] Z. W. Pan, Z. R. Dai, C. Ma, Z. L. Wang, J. Am. Chem. Soc. 2002, 124, 1817.
    [73] H. Yan, R. He, J. Pham, P. Yang, Adv. Mater. 2003, 15, 402.
    [74] Y. Zhang, H. Jia, X. Luo, X. Chen, D. Yu, R. Wang, J. Phys. Chem. B 2003, 107, 8289.
    [75] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 2001, 409, 66.
    [76] X. Duan, Y, Huang, R. Agarwal, C. M. Lieber, Nature 2003, 421, 241.
    [77] Y. Cui, C. M. Lieber, Science 2001, 291, 851.
    [78] D. Routkevitch, T. Bigioni, M. Moskovits, J. M. Xu, J. Phys. Chem. 1996, 100, 14037.
    [79] Y. Li, D. Xu, Q. Zhang, D. Chen, F. Huang, Y. Xu, G. Guo, Z. Gu, Chem. Mater. 1999, 11, 3433.
    [80] Y. Wang, G. Meng, L. Zhang, C. Liang, J. Zhang, Chem. Mater. 2002, 14, 1773.
    [81] Y. Wang, L. Zhang, C. Liang, G. Wang, X. Peng, Chem. Phys. Lett. 2002, 357, 314.
    [82] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 2001, 409, 66.
    [83] X. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Nature 2003, 421, 241.
    [84] Instruction Manual of Sputter Coater SPI-MODULE.
    [85] G. Kalyuzhny, A. Vaskevich, G. Ashkenasy, A. Shanzer, I. Rubinstein, J. Phys. Chem. B 2000, 104, 8238.
    [86] L. Spanhel,; M. Haase,; H. Weller,; A. Henglein, J. Am. Chem. Soc. 1987, 109, 5649.
    [87] M. O’Neil,; J. Marohn,; G. McLendon, J. Phys. Chem. 1990, 94, 4356.
    [88] J. Butty,; N. Peyghambarian, Appl. Phys. Lett. 1996, 69, 3224.
    [89] J. Zhan,; X. Yang,; D. Wang,; S. Li,; Y. Xie,; Y. Xia,; Y. Qian, Adv. Mater. 2000, 12, 1348.
    [90] S. M. Sze, Physics of Semiconductor Devices, Wiley: New York, 1969.
    [91] J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, S. T. Lee, Chem. Mater. 2003, 15, 305.
    [92] W. Han, A. Zettl, Adv. Mater. 2002, 14, 1560.
    [93] J. Hu, Y. Bando, Z. Liu, Adv. Mater. 2003, 15, 1000.
    [94] Y. Wu, R. Fan, P. Yang, Nano Lett. 2002, 2, 83.
    [95] M. T. BjÖrk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, L. Samuelson, Nano Lett. 2002, 2, 87.
    [96] Y. Li, Y. Bando, D. Golberg, Adv. Mater. 2004, 16, 93.
    [97] J.-J. Wu, T.-C. Wong, C.-C. Yu, Adv. Mater. 2002, 14, 1643.
    [98] K.-K. Lew, L. Pan, E. C. Dickey, J. M. Redwing, Adv. Mater. 2003, 15, 2073.
    [99] Y. Xie, P. Yan, J. Lu, Y. Qian, S. Zhang, Chem. Commun. 1999, 1969.
    [100] Y.-G. Guo, L.-J. Wan, C.-L. Bai, J. Phys. Chem. B 2003, 107, 5441.
    [101] J. Cao, J.-Z. Sun, J. Hong, H.-Y. Li, H.-Z. Chen, M. Wang, Adv. Mater. 2004, 16, 84.
    [102] A. M. Morales, C. M. Lieber, Science 1998, 279, 208.
    [103] H.-M. Lin, Y.-L. Chen, J. Yang, Y.-C. Liu, K.-M. Yin, J.-J. Kai, F.-R. Chen, L.-C. Chen, Y.-F. Chen, C.-C. Chen, Nano Lett. 2003, 3, 537.
    [104] A. Kolmakov, Y. Zhang, M. Moskovits, Nano Lett. 2003, 3, 1125.
    [105] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 2001, 13, 113.
    [106] X. Duan, C. M. Lieber, Adv. Mater. 2000, 12, 298.
    [107] C. J. Barrelet, Y. Wu, D. C. Bell, C. M. Lieber, J. Am. Chem. Soc. 2003, 125, 11498.
    [108] T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, P. Yang, Nano Lett. 2003, 3, 1063.
    [109] Q. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R. Gutierrez, J. M. Redwing, L. C. Lew Yan Voon, B. Lassen, P. C. Eklund, Nano Lett. 2004, 4, 1663.
    [110] L. Dong, T. Gushtyuk, J. Jiao, J. Phys. Chem. B 2004, 108, 1617.
    [111] A. Wang, J. Dai, J. Cheng, M. P. Chudzik, T. J. Marks, R. P. H. Chang, C. R. Kannewurf, Appl. Phys. Lett. 1998, 73, 327.
    [112] D. L. Young, D. L. Williamson, T. J. Coutts, J. Appl. Phys. 2002, 91, 1464.
    [113] B. A. Korgel, H. G. Monbouquette, Langmuir 2000, 16, 3588.
    [114] X. Zhong, M. Han, Z. Dong, T. J. White, W. Knoll, J. Am. Chem. Soc. 2003, 125, 8589.
    [115] D. V. Petrov, B. S. Santos, G. A. L. Pereira, C. D. M. Donegá, J. Phys. Chem. B 2002, 106, 5325.
    [116] X. Zhong, Y. Feng, W. Knoll, M. Han, J. Am. Chem. Soc. 2003, 125, 13559.
    [117] S. C. Ray, M. K. Karanjai, D. DasGupta, Thin Solid Films 1998, 322, 117.
    [118] M. E. Rincón, M. W. Martínez, M. Miranda-Hernández, Solar Energy Mater. Solar Cells 2003, 77, 25.
    [119] Hao, E.; Sun, H.; Zhou, Z.; Liu, J.; Yang, B.; Shen, J. Chem. Mater. 1999, 11, 3096.
    [120] Nirmal, M.; Brus, L. Acc. Chem. Res. 1999, 32, 407.
    [121] Cumberland, S. L.; Hanif, K. M.; Javier, A.; Khitrov, G. A.; Strouse, G. F.; Woessner, S. M.; Yun, C. S. Chem. Mater. 2002, 14, 1576.
    [122] L. G. Suslina, E. I. Danasyuk, S. G. Konnikov, D. L. Federov, Sov. Phys. Semicond. 1976, 10, 1093.
    [123] L. I. Berger, Semiconductor Materials, CRC Press: Florida, 1997.
    [124] M. O’Neil, J. Marohn, G. McLendon, J. Phys. Chem. 1990, 94, 4356.
    [125] J. Butty, N. Peyghambarian, Y. H. Kao, J. D. Mackenzie, Appl. Phys. Lett. 1996, 69, 3224.
    [126] K.-W. Chang, J.-J. Wu, Adv. Mater. 2004, 16, 545.
    [127] M. S. Gudiksen, C. M. Lieber, J. Am. Chem. Soc. 2000, 122, 8801.
    [128] N. I. Kovtyukhova, B. R. Martin, J. K. N. Mbindyo, P. A. Smith, B. Razavi, T. S. Mayer, T. E. Mallouk, J. Phys. Chem. B 2001, 105, 8762.
    [129] Y.-M. Lin, S. B. Cronin, J. Y. Ying, M. S. Dresselhaus, Appl. Phys. Lett. 2000, 76, 3944.
    [130] S. Y. Chou, M. S. Wei, P. R. Krauss, P. B. Fischer, J. Appl. Phys. 1994, 76, 6673.
    [131] E. C. Walter, K. Ng, M. P. Zach, R. M. Penner, F. Favier, Microelectron. Eng. 2002, 61-62, 555.
    [132] C. D. Keating, M. J. Natan, Adv. Mater. 2003, 15, 451.
    [133] J. Wang, M. Tian, T. E. Mallouk, M. H. W. Chan, J. Phys. Chem. B 2004, 108, 841.
    [134] Y.-J. Han, J. M. Kim, G. D. Stucky, Chem. Mater. 2000, 12, 2068.
    [135] S. Vaddiraju, H. Chandrasekaran, M. K. Sunkara, J. Am. Chem. Soc. 2003, 125, 10792.
    [136] Y. Wang, L. Zhang, G. Meng, C. Liang, G. Wang, S. Sun, Chem. Commun. 2001, 2632.
    [137] G. W. Sears, Acta Metall. 1955, 3, 361.
    [138] G. W. Sears, Acta Metall. 1955, 3, 367.
    [139] M. Casella, G. J. Siri, G. F. Santori, O. A. Ferretti, Langmuir 2000, 16, 5639.
    [140] M. Tian, J. Wang, J. Snyder, J. Kurtz, Y. Liu, Appl. Phys. Lett. 2003, 83, 1620.
    [141] L. Dong,; T. Gushtyuk,; J. Jiao, J. Phys. Chem. B 2004, 108, 1617.
    [142] E. G. Wolfe, T. D. Coskren, J. Am. Ceram. Soc. 1965, 21, 279.
    [143] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science, 2001, 291, 1947.
    [144] J. Zhang, F. Jiang, L. Zhang, J. Phys. Chem. B 2004, 108, 7002.
    [145] W. A. Tiller, The Science of Crystallization: Microscopic Interfacial Phenomena, Cambridge University Press: New York, 1991.
    [146] S. Hong, Y.-H. Shin, J. Ihm, Jpn. J. Appl. Phys. 2002, 41, 6142.
    [147] J. Zhang, X. Li, X. Sun, Y. Li, J. Phys. Chem. B 2005, 109, 12544.
    [148] P. Yang, C. M. Lieber, J. Mater. Res. 1997, 12, 2981.
    [149] C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev. 2005, 105, 1025.
    [150] R. Narayanan, M. A. El-Sayed, Nano Lett. 2004, 4, 1343.
    [151] S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science 2000, 287, 1989.
    [152] S. Chen, Z. L. Wang, J. Ballato, S. H. Foulger, D. L. Carroll, J. Am. Chem. Soc. 2003, 125, 16186.
    [153] F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Angew. Chem. Int. Ed. 2004, 43, 3673.
    [154] L. Xu, Y. Guo, Q. Liao, J. Zhang, D. Xu, J. Phys. Chem. B 2005, 109, 13519.
    [155] C. J. Orendorff, P. L. Hankins, C. J. Murphy, Langmuir 2005, 21, 2022.
    [156] C. Ni, P. A. Hassan, E. W. Kaler, Langmuir 2005, 21, 3334.
    [157] H.-T. Zhang, G. Wu, X.-H. Chen, Langmuir 2005, 21, 4281.
    [158] W. Lu, Y. Ding, Y. Chen, Z. L. Wang, J. Fang, J. Am. Chem. Soc. 2005, 127, 10112.
    [159] C. Salzemann, J. Urban, I. Lisiecki, M.-P. Pileni, Adv. Func. Mater. 2005, 15, 1277.
    [160] S. Chen, Z. Fan, D. L. Carroll, J. Phys. Chem. B 2002, 106, 10777.
    [161] H.-J. Ahn, K.-W. Park, Y.-E. Sung, Chem. Mater. 2004, 16, 1991.
    [162] L. Balan, R. Schneider, D. Billaud, J. Ghanbaja, Mater. Lett. 2005, 59, 1080.
    [163] K. Soulantica, A. Maisonnat, M.-C. Fromen, M.-J. Casanove, B. Chaudret, Angew. Chem. Int. Ed. 2003, 42, 1945.
    [164] M. Tian, J. Wang, J. Snyder, J. Kurtz, Y. Liu, P. Schiffer, T. E. Mallouk, M. H. W. Chan, Appl. Phys. Lett. 2003, 83, 1620.
    [165] M. Tian, J. Wang, J. S. Kurtz, Y. Liu, M. H. W. Chan, Phys. Rev. B 2005, 71, 104521(1-7).
    [166] V. D. Natsik, V. P. Soldatov, L. G. Ivanchenko, G. I. Kirichenko, Low Temp. Phys. 2004, 30, 253.
    [167] M. Suzuki, I. S. Suzuki, J. Walter, Physica C 2004, 402, 243.
    [168] Y. Oreg, A. M. Finkel’stein, Phys. Rev. Lett. 1999, 83, 191.
    [169] G. Yi, W. Schwarzacher, Appl. Phys. Lett. 1999, 74, 1746.
    [170] F. Sharifi, A. V. Herzog, R. C. Dynes, Phys. Rev. Lett. 1993, 71, 428.
    [171] A. V. Herzog, P. Xiong, F. Sharifi, R. C. Dynes, Phys. Rev. Lett. 1996, 76, 668.
    [172] V. D. Natsik, V. P. Soldatov, L. G. Ivanchenko, G. I. Kirichenko, Low Temp. Phys. 2004, 30, 253.
    [173] M. Suzuki, I. S. Suzuki, J. Walter, Physica C 2004, 402, 243.
    [174] O. S. Lutes, Phys. Rev. 1957, 105, 1451.
    [175] S. Dubois, A. Michel, J. P. Eymery, J. L. Duvail, L. Piraux, J. Mater. Res. 1999, 14, 665.
    [176] J. M. Valles, Jr., R. C. Dynes, J. P. Garno, Phys. Rev. B 1989, 40, 6680.
    [177] S.-Y. Hsu, J. M. Valles Jr., Phys. Rev. B 1993, 47, 14334.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE