簡易檢索 / 詳目顯示

研究生: 王棋毅
Wang, Chi-Yi
論文名稱: 不同自行車騎乘姿勢與握持位置對下臂及手指肌肉活化的影響
Effects of Different Cycling Postures and Handlebar Grips on Forearm and Finger Muscle Activation
指導教授: 邱文信
Chiu, Wen-Hsin
口試委員: 陳家祥
Chen, Chia-Hsing
柯柏任
Ko, Bo-Jen
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 運動科學系
Physical Education
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 63
中文關鍵詞: 騎乘姿態手部肌肉自行車車把
外文關鍵詞: Riding Postures, Hand Muscle, Handlebar
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:探討自行車坐姿姿勢及站立姿勢騎乘於四種不同握持位置之下臂及手指肌肉活化差異。方法:本研究參與者成年男性20人,每位參與者重複進行兩種騎乘姿勢及四種握持位置,以平衡次序法共騎乘八次,以DELSYS無線表面肌電測量儀收取慣用手伸腕肌、屈腕肌、第一骨間背側肌、第二骨間背側肌、第三骨間背側肌及第四骨間背側肌共六條肌群,踩踏節奏90±3,功率輸出達200W後平穩15秒,收取20秒肌電訊號,透過 MVC 肌電訊號標準化,以重複量數變異數分析個別考驗坐姿騎乘和站姿騎乘於四種握持位置肌肉活化差異,以杜凱氏事後比較分析,另相依樣本t檢定比較四種握持位置坐姿騎乘相對於站姿騎乘肢肌肉活化差異,顯著水準α < .05。結果:經事後比較,坐姿騎乘於上把握持伸腕肌及屈腕肌達顯著差異,下把握持於第一骨間背側肌達顯著差異,站姿騎乘於上把握持之第三骨間背側肌達顯著差異,經t檢定結果,坐姿騎乘與站姿騎乘於四種握持位置伸腕肌、屈腕肌、第一骨間背側肌及第二骨間背側肌皆達顯著差異。結論:坐姿騎乘於上把握持有較高肌肉負荷,其餘三種握持皆較優,於下把握持第一骨間背側肌有較高活化,站姿騎乘在煞變把、下把與下彎把握持第三骨間背側肌活化較高,站姿騎乘相較於坐姿騎乘伸腕肌、屈腕肌、第一骨間背側肌及第二骨間背側肌活化較高,建議自行車使用者騎乘前,參考本研究結果。


    Purpose: To investigate the differences in muscle activation in the arms and fingers of cyclists riding in four different grip positions in the seated and standing positions. Method: Twenty adult males participated in this study. Each participant repeated two cycling postures and four holding positions and rode eight times with the balanced sequence method. Six muscle groups, namely, wrist extensor, wrist flexor, first interosseous dorsal, second interosseous dorsal, third interosseous dorsal, and fourth interosseous dorsal were collected from the habitual hand using DELSYS wireless surface electromyography. The signal was collected for 20 seconds after stabilizing for 15 seconds at 200 W power output. After stabilizing for 15 seconds at 200 W output, a 20-second myoelectric signal was collected, and muscle activation differences between seated riders and standing riders in the four grip positions were examined by MVC myoelectric signal standardization with dependent samples of repeated measures, analyzed by Tukey HSD, and dependent samples of t-tests to compare muscle activation differences between seated riders and standing riders in the four grip positions, with a significance level of α < .05. Result: After post hoc comparisons, seated riders achieved significant differences in the extensor carpi ulnar and flexor carpi ulnar muscles in the upper grip, in the dorsal paraspinal muscles of the first interosseous muscle in the lower grip, and in the dorsal paraspinal muscles of the third interosseous muscle in the upper grip in the standing position. The t-test results showed that seated riders achieved significant differences in the extensor carpi ulnar, flexor carpi ulnar, dorsal paraspinal muscles of the first interosseous muscle, and dorsal paraspinal muscles of the second interosseous bone in all four gripping positions compared with standing riders. Conclusion: In seated riding, the muscle load was higher in the upper grip and better in the other three grips, the activation of the first interosseous dorsalis muscle was higher in the lower grip, the activation of the third interosseous dorsalis muscle was higher in the brake lever, the lower handlebar, and the downward bending grip in standing riding, and the activation of the extensor carpi radialis brevis, flexor carpi radialis brevis, first interosseous dorsalis muscle, and second interosseous dorsalis muscle was higher in standing riding compared to seated riding, and the results are recommended that bicyclists refer to the results of the present study when they are riding. The results of this study are summarized in the following table.

    中文摘要 I ABSTRACT II 誌謝 IV 表次 VII 圖次 IX 第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的 3 第三節 名詞操作型定義 4 第四節 研究範圍與限制 7 第貳章 文獻探討 8 第一節 騎乘姿勢改變之影響 8 第二節 握持位置對自行車運動的影響 10 第三節 手指肌肉對自行車運動的重要性 12 第四節 文獻總結 14 第參章 研究方法 16 第一節 研究架構 16 第二節 研究對象 17 第三節 研究日期與地點 17 第四節 研究器材與設備 18 第五節 實驗場地與儀器架設 22 第六節 實驗流程與步驟 22 第七節 資料處理與統計分析 24 第肆章 結果 26 第一節 坐姿騎乘內四種握持位置之下臂手指肌肉活化差異 27 第二節 站姿騎乘內四種握持位置之下臂手指肌肉活化差異 35 第三節 第三節坐站騎乘內四種握持位置之下臂手指肌肉活化差異 42 第伍章 討論與結論 47 第一節 坐姿騎乘內四種握持位置之肌肉活化 47 第二節 站姿騎乘內四種握持位置之肌肉活化 49 第三節 比對站坐騎乘四種握持位置之肌肉活化 51 第四節 結論 52 第五節 建議 53 參考文獻 55

    石昇文、羅國城、王苓華(2009)。棒球投手投擲手部之生物力學。大專體育,104,108-114。doi:10.6162/SRR.2009.104.16
    吳武政(2001)。以誘導式歸納途徑法探討自行車騎乘姿勢與車架尺寸之關係〔未出版之碩士論文〕。大同大學工業設計研究所。
    李尹鑫、陳家祥、顏笠哲、相子元(2018)。自行車踩踏功率的應用與發展。體育學報,51(2),145-154。https://doi.org/10.3966/102472972018065102001
    邱文信、黃斯胤、楊振宏(2013)。探討自行車把手型式對上肢肌群活動之影響。人因工程學刊,15(1),45-51。
    邱敏綺、吳欣潔(2014)。自行騎乘姿勢對運動學、力學、生理負荷與主觀費力程度之影響,國防管理學報,35(2),57-67。
    陳羿揚、林琨瀚、邱文信(2021)。手指動作對改變棒球投擲球路的效益:系統性回顧。中華體育季刊,35(2),113-124。doi:10.6223/qcpe.202106_35(2).0005
    陳羿揚、邱文信、林聖傑(2019)。不同層級足球選手邊線投擲之上肢肌肉活化差異。體育學報,52(2),189-198。DOI:10.6222/pej.201906_52(2).0004
    陳家祥、石翔至、相子元(2015)。最佳的自行車騎乘姿勢。人文社會科學研究教育類,9(4),1-11。doi:10.6618/HSSRP.2015.9(4)1
    彭杏珠(2021年9月)。台灣自行車王國再旺下個十年。遠見雜誌。https://www.gvm.com.tw/article/82832
    黃台生(2009)。公路自行車把手舒適度之研究。設計學報,14(2),51-71。
    黃貫倫、吳佳蓉、陳秀榮、陳彥廷、凃瑞洪(2012)。摺疊自行車振幅對頸部的影響。華人運動生物力學期刊,7,113-117。
    劉苓瑩、楊佳政 (2021)。臥推肘關節角度對最大肌力、肌耐力與握力表現之影響〔未出版之碩士論文〕。台中教育大學體育學系。
    鍾綉貞、張雅嫻、陳俐君、何宜靜(2010)。城市休閒乘用自行車車手把之人因工程評估。工作與休閒學刊,2(1),19-29。doi:10.6848/JWL.201009_2(1).0002
    Abt, J. P., Smoliga, J. M., Brick, M. J., Jolly, J. T., Lephart, S. M., & Fu, F. H. (2007). Relationship between cycling mechanics and core stability. The Journal of Strength & Conditioning Research, 21(4), 1300-1304.
    Akuthota, V., Plastaras, C., Lindberg, K., Tobey, J., Press, J., & Garvan, C. (2005). The effect of long-distance bicycling on ulnar and median nerves: an electrophysiologic evaluation of cyclist palsy. The American Journal of Sports Medicine, 33(8), 1224-1230. https://doi.org/10.1177/0363546505275131
    Antequera-Vique, J. A., Oliva-Lozano, J. M., & Muyor, J. M. (2022). Effects of cycling on the morphology and spinal posture in professional and recreational cyclists: a systematic review. Sports Biomechanics, 1-30. https://doi.org/10.1080/14763141.2022.2058990
    Arpinar-Avsar, P., Birlik, G., Sezgin, Ö. C., & Soylu, A. R. (2013). The effects of surface-induced loads on forearm muscle activity during steering a bicycle. Journal of Sports Science & Medicine, 12(3), 512.
    Ayachi, F. S., Dorey, J. & Guastavino, C. (2015). Identifying factors of bicycle comfort: An online survey with enthusiast cyclists. Applied Ergonomics, 46, 124-136. https://doi.org/10.1016/j.apergo.2014.07.010
    Balas, J., Pecha, O., Martin, A., & Cochrane, D. (2012). Hand-arm strength and endurance predictors of climbing performance. European Journal of Sport Science, 12, 16-25.
    Bini, R., Hume, P. A., & Croft, J. L. (2011). Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Medicine, 41(6), 463-476. https://doi.org/10.2165/11588740-000000000-00000
    Bressel, E., & Cronin, J. (2005). Bicycle seat interface pressure: reliability, validity, and influence of hand position and workload. Journal of Biomechanics, 38(6), 1325-1331. https://doi.org/10.1016/j.jbiomech.2004.06.006
    Briggs, M. S., Rethman, K. K., & Lopez, M. T. (2018). Clinical decision making and differential diagnosis in a cyclist with upper quarter pain, numbness, and weakness: a case report. International Journal of Sports Physical Therapy, 13(2), 255.
    Brubacher, J. W., & Leversedge, F. J. (2017). Ulnar Neuropathy in Cyclists. Hand Clinics, 33(1), 199-205. https://doi.org/10.1016/j.hcl.2016.08.015
    Burden, A. (2010). How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research. Journal of Electromyography and Kinesiology, 20(6), 1023-1035. https://doi.org/10.1016/j.jelekin.2010.07.004
    Chapman, A. R., Vicenzino, B., Blanch, P., Knox, J. J., Dowlan, S., & Hodges, P. W. (2008). The influence of body position on leg kinematics and muscle recruitment during cycling. Journal of Science and Medicine in Sport, 11(6), 519-526. https://doi.org/10.1016/j.jsams.2007.04.010
    Chen, C. H., Wu, Y. K., Chan, M. S., Shih, Y., & Shiang, T. Y. (2016). The force output of handle and pedal in different bicycle-riding postures. Research in Sports Medicine, 24(1), 54-66. https://doi.org/10.1080/15438627.2015.1126276
    Chiaramonte, R., Pavone, P., Musumeci, G., Di Rosa, M., & Vecchio, M. (2021). Preventive strategies, exercises and rehabilitation of hand neuropathy in cyclists: A systematic review. Journal of Hand Therapy, 35(2) , 164-173. https://doi.org/10.1016/j.jht.2021.11.003
    Clarys, J. P., Alewaeters, K., & Zinzen, E. (2001). The influence of geographic variations on the muscular activity in selected sports movements. Journal of Electromyography and Kinesiology, 11, 451-457.
    Cohen, G. C. (1993). Cycling injuries. Canadian Family Physician, 39, 628.
    Chikenji, T., Toda, H., Gyoku, C., Oikawa, N., Katayose, M., & Tsubota, S. (2010). A comparison of the strength of the abduction of the little and index fingers and palmar abduction and opposition of the thumb between college baseball players and inexperienced sports players. Journal of Musculoskeletal Research, 13(02), 75-82. https://doi.org/10.1142/S021895771000246.
    Da Silva, J. C. L., Tarassova, O., Ekblom, M. M., Andersson, E., Rönquist, G., & Arndt, A. (2016). Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography. European Journal of Applied Physiology, 116, 1807-1817. https://doi.org/10.1007/s00421-016-3428-5
    De Vey Mestdagh, K. (1998). Personal perspective: in search of an optimum cycling posture. Applied Ergonomics, 29(5), 325-334. https://doi.org/10.1016/S0003-6870(97)00080-X
    Doré, E., Steven Baker, J., Jammes, A., Graham, M., New, K., & Van Praagh, E. (2006). Upper body contribution during leg cycling peak power in teenage boys and girls. Research in Sports Medicine, 14(4), 245-257. https://doi.org/10.1080/15438620600985829
    Dorel, S., Couturier, A., & Hug, F. (2009). Influence of different racing positions on mechanical and electromyographic patterns during pedalling. Scandinavian Journal of Medicine & Science in Sports, 19(1), 44-54. https://doi.org/10.1111/j.1600-0838.2007.00765.x
    Eilert-Petersson, E., & Schelp, L. (1997). An epidemiological study of bicycle-related injuries. Accident Analysis & Prevention, 29(3), 363-372. https://doi.org/10.1016/S0001-4575(97)00002-X
    El-Sais, W. M, & Mohammad, W. S. (2014). Influence of different testing postures on hand grip strength. European Scientific Journal, 10, 290-301.
    Espana-Romero, V., Ortega, F. B., Vicente-Rodriguez, G., Artero, E. G., Rey, J. P., & Ruiz, J. R. (2010). Elbow position affects handgrip strength in adolescents: Validity and reliability of jamar, DynEx, and TKK dynamometers. Journal of Strength and Conditioning Research, 24, 272-277.
    Flament, D., Goldsmith, P., Buckley, C. J., & Lemon, R. N. (1993). Task dependence of responses in first dorsal interosseous muscle to magnetic brain stimulation in man. The Journal of Physiology, 464(1), 361-378. https://doi.org/10.1113/jphysiol.1993.sp019639
    García-López, J., Díez-Leal, S., Ogueta-Alday, A., Larrazabal, J., & Rodríguez-Marroyo, J. A. (2016). Differences in pedalling technique between road cyclists of different competitive levels. Journal of Sports Sciences, 34(17), 1619-1626. https://doi.org/10.1080/02640414.2015.1127987
    Hansen, E. A., & Waldeland, H. (2008). Seated versus standing position for maximization of performance during intense uphill cycling. Journal of Sports Sciences, 26(9), 977-984. https://doi.org/10.1080/02640410801910277
    Harnish, C., King, D., & Swensen, T. (2007). Effect of cycling position on oxygen uptake and preferred cadence in trained cyclists during hill climbing at various power outputs. European Journal of Applied Physiology, 99(4), 387-391. https://doi.org/10.1007/s00421-006-0358-7
    Holliday, W., & Swart, J. (2021). Performance variables associated with bicycle configuration and flexibility. Journal of Science and Medicine in Sport, 24(3), 312-317. https://doi.org/10.1016/j.jsams.2020.09.015
    Holliday, W., Theo, R., Fisher, J., & Swart, J. (2019). Cycling: Joint kinematics and muscle activity during differing intensities. Sports Biomechanics, 1-15. https://doi.org/10.1080/14763141.2019.1640279
    Jansen, C., & McPhee, J. (2020). Predictive dynamic simulation of Olympic track cycling standing start using direct collocation optimal control. Multibody System Dynamics, 1-18. https://doi.org/10.1007/s11044-020-09723-3
    John, C., Trent, L., Nigel, H., Andrew, K., & Daniel, M. T. (2017). A brief review of handgrip strength and sport performance. The Journal of Strength & Conditioning Research, 31(11), 3187-3217. DOI: 10.1519/JSC.0000000000002149
    Kotler, D. H., Babu, A. N., & Robidoux, G. (2016). Prevention, evaluation, and rehabilitation of cycling-related injury. Current Sports Medicine Reports, 15(3), 199-206. DOI:10.1249/JSR.0000000000000262
    Kuijt-Evers, L. F. M., Bosch, T., Huysmans, M. A., De Looze, M. P., & Vink, P. (2007). Association between objective and subjective measurements of comfort and discomfort in hand tools. Applied Ergonomics, 38(5), 643-654. https://doi.org/10.1016/j.apergo.2006.05.004
    Kwan, M., & Rasmussen, J. (2011). Linking badminton racket design and performance through motion capture. Computer Aided Medical Engineering, 2(1), 13-18.
    Lee, H., Martin, D. T., Anson, J. M., Grundy, D., & Hahn, A. G. (2002). Physiological characteristics of successful mountain bikers and professional road cyclists. Journal of Sports Sciences, 20(12), 1001-1008. https://doi.org/10.1080/026404102321011760
    Lupo, C. (2015). Anthropometric, strength, session-RPE, and shoot performance evaluations in sub-elite male Italian basketball players. Italian Journal of Anatomy and Embryology, 120(1), 204.
    Malizia, F., & Blocken, B. (2020). Bicycle aerodynamics: History, state-of-the-art and future perspectives. Journal of Wind Engineering and Industrial Aerodynamics, 200, 104134. https://doi.org/10.1016/j.jweia.2020.104134
    Martin, J. C., Davidson, C. J., & Pardyjak, E. R. (2007). Understanding sprint-cycling performance: the integration of muscle power, resistance, and modeling. International Journal of Sports Physiology and Performance, 2(1), 5-21. DOI: https://doi.org/10.1123/ijspp.2.1.5
    Merkes PFJ, Menaspà P, Abbiss CR. (2019). Reducing aerodynamic drag by adopting a novel road-cycling sprint position. Int J Sports Physiol Perform, 14(6), 733-738.
    Merkes, P. F., Menaspà, P., & Abbiss, C. R. (2020). Power output, cadence, and torque are similar between the forward standing and traditional sprint cycling positions. Scandinavian Journal of Medicine & Science in Sports, 30(1), 64-73.
    Millet, G. P., Tronche, C., Fuster, N., & Candau, R. (2002). Level ground and uphill cycling efficiency in seated and standing positions. Medicine & Science in Sports & Exercise, 34(10), 1645-1652. DOI: 10.1249/01.MSS.0000031482.14781.D7
    Minetti, A. E., Pinkerton, J., & Zamparo, P. (2001). From bipedalism to bicyclism: evolution in energetics and biomechanics of historic bicycles. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1474), 1351-1360. https://doi.org/10.1098/rspb.2001.1662
    Mitchell, A. C., Bowhay, A., & Pitts, J. (2011). Relationship between anthropometric characteristics of indoor rock climbers and top roped climbing performance. The Journal of Strength & Conditioning Research, 25, 94-95. DOI:10.1097/01.JSC.0000395728.22365.7d
    Muyor, J. M., & Zabala, M. (2016). Road cycling and mountain biking produces adaptations on the spine and hamstring extensibility. International Journal of Sports Medicine, 37(01), 43-49. DOI: 10.1055/s-0035-1555861
    Muyor, J. M., Antequera-Vique, J. A., Oliva-Lozano, J. M., & Arrabal-Campos, F. M. (2022). Evaluation of Dynamic Spinal Morphology and Core Muscle Activation in Cyclists—A Comparison between Standing Posture and on the Bicycle. Sensors, 22(23), 9346. https://doi.org/10.3390/s22239346
    Padulo, J., Ardigò, L. P., Milić, M., & Powell, D. W. (2016). Electromyographic analysis of riding posture during the bicycling start moment. Motriz: Revista de Educação Física, 22, 0237-0242. https://doi.org/10.1590/S1980-6574201600040003
    Palmer, T. G. (2012). Effects of proximal stability training on sport performance and proximal stability measures.Theses and Dissertations[Unpublished doctoral dissertation]. University of Kentucky.
    Richmond, D. R. (1994). Handlebar problems in bicycling. Clinics in Sports Medicine, 13(1), 165-173.
    Roseiro, L. M., Neto, M. A., Amaro, A. M., Alcobia, C. J., & Paulino, M. F. (2016). Hand-arm and whole-body vibrations induced in cross motorcycle and bicycle drivers. International Journal of Industrial Ergonomics, 56, 150-160. https://doi.org/10.1016/j.ergon.2016.10.008
    Russ, K. (2011). Towards the Prevention of Handlebar Palsy: The Contribution of Handlebar Shape and Road Grade on Localized Hand Pressures. [Unpublished doctoral dissertation]. University of The Ohio State.
    Savelberg, H. H., Van de Port, I. G., & Willems, P. J. (2003). Body configuration in cycling affects muscle recruitment and movement pattern. Journal of Applied Biomechanics, 19(4), 310-324. https://doi.org/10.1123/jab.19.4.310
    Silder, A., Gleason, K., & Thelen, D. G. (2011). Influence of bicycle seat tube angle and hand position on lower extremity kinematics and neuromuscular control: implications for triathlon running performance. Journal of Applied Biomechanics, 27(4), 297-305. DOI: https://doi.org/10.1123/jab.27.4.297
    So, R. C. H., Ng, J. K. F., & Ng, G. Y. F. (2005). Muscle recruitment pattern in cycling: a review. Physical Therapy in Sport, 6, 89-96. https://doi.org/10.1016/j.ptsp.2005.02.004
    Stodden, D. F., Fleisig, G. S., McLean, S. P., & Andrews, J. R. (2005). Relationship of biomechanical factors to baseball pitching velocity: within pitcher variation. Journal of Applied Biomechanics, 21(1), 44-56.
    Streisfeld, G. M., Bartoszek, C., Creran, E., Inge, B., McShane, M. D., & Johnston, T. (2017). Relationship between body positioning, muscle activity, and spinal kinematics in cyclists with and without low back pain: A systematic review. Sports Health, 9(1), 75-79. https://doi.org/10.1177/1941738116676260
    Swart, J., & Holliday, W. (2019). Cycling Biomechanics Optimization—The (R) Evolution of Bicycle Fitting. Current Sports Medicine Reports, 18(12), 490-496. doi:10.1249/JSR.0000000000000665
    Turpin, N. A., & Watier, B. (2020). Cycling biomechanics and its relationship to performance. Applied Sciences, 10(12), 4112. https://doi.org/10.3390/app10124112
    Turpin, N. A., Costes, A., Moretto, P., & Watier, B. (2017). Can muscle coordination explain the advantage of using the standing position during intense cycling?. Journal of Science and Medicine in Sport, 20(6), 611-616. https://doi.org/10.1016/j.jsams.2016.10.019
    Turpin, N. A., Costes, A., Moretto, P., & Watier, B. (2017). Upper limb and trunk muscle activity patterns during seated and standing cycling. Journal of Sports Sciences, 35(6), 557–564. https://doi.org/10.1080/02640414.2016.1179777
    Verma, R., Hansen, E. A., de Zee, M., & Madeleine, P. (2016). Effect of seat positions on discomfort, muscle activation, pressure distribution and pedal force during cycling. Journal of Electromyography and Kinesiology, 27, 78-86. https://doi.org/10.1016/j.jelekin.2016.02.003
    Waldman, S. D., & Michael Lee, J. (2002). Boundary conditions during biaxial testing of planar connective tissues. Part 1: dynamic behavior. Journal of Materials Science: Materials in Medicine, 13(10), 933-938.
    Watanabe, S., Eguchi, A., Kobara, K., Ishida, H., & Otsuki, K. (2006). Electromyographic activity of selected trunk muscles during bicycle ergometer exercise and walking. Electromyography and Clinical Neurophysiology, 46(5), 311-315.
    Nandi, T., Hortobágyi, T., van Keeken, H. G., Salem, G. J., & Lamoth, C. J. (2019). Standing task difficulty related increase in agonist-agonist and agonist-antagonist common inputs are driven by corticospinal and subcortical inputs respectively. Scientific Reports, 9(1), 2439. https://doi.org/10.1038/s41598-019-39197-z
    Buniya, A., Al-Timemy, A. H., Aldoori, A., & Khushaba, R. N. (2020). Analysis of different hand and finger grip patterns using surface electromyography and hand dynamometry. Al-Khwarizmi Engineering Journal, 16(2), 14-23. doi:10.22153/kej.2020.05.001

    QR CODE