簡易檢索 / 詳目顯示

研究生: 廖家翎
Liao, Jia-Ling
論文名稱: 新穎過渡金屬錯合物合成、光物理 及OLED元件製備
The New Design for Transition-Metal Phosphors: Synthesis, Luminescent Properties, and Applications in OLEDs
指導教授: 季昀
Chi, Yin
口試委員: 蔡易州
Tsai, Yi-Chou
鄭彥如
Cheng, Yen-Ju
徐秀福
Hsu, Hsiu-Fu
洪文誼
Hung, Wen-Yi
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 187
中文關鍵詞: 有機發光二極體磷光材料
外文關鍵詞: OLED, phosphorescent material, iridium, osmium, platinum
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,OLED在下一代的平面顯示與固態照明等相關應用受到廣大的重視,以第三列過渡金屬 (包含Os(II)、Pt(II)、Ir(III)) 為中心原子的磷光材料扮演相當重要角色,可有效利用單重態與三重態激子,進而高達百分之百的內部量子效率,效率遠遠高於傳統的螢光小分子。因此本篇論文主要在開發新穎的過渡金屬磷光材料。
    在第一部分,我們將三牙配位基 (pz2py) 引入鋨金屬錯合物,pz2py 配位基具備數項優點,包含高反應活性和三牙面式結構,因而可得一系列高產率的鋨金屬錯合物。其中,以具含膦高發光效率,為一高效率黃光而且具剛硬骨架的鋨金屬錯合物。
    而在第二部分,藉由引進LLCT (ligand to ligand charge transfer transition),可得到一NIR鋨錯合物2.2b,此錯合物為Os(bpy)(bitz)(PPhMe2)2,並製備NIR OLED元件,其放光涵蓋至800 nm之後,為鋨金屬錯合物應用於NIR emitter開創一個新的研究領域。
    第三部分則是一系列 [Pt(C^C)(X^X)] 錯合物,其中 (C^C) 為中性dicarbene配位基,而(X^X) 則為負二價配位基,調節此兩種配位基的搭配可得高發光效率的鉑錯合物。在OLED元件的應用方面,我們利用新合成的錯合物2.3f為發光材料製備天藍光元件,最大元件效率為8.9%、19.4 cd·A−1、22.5 lm·W−1。
    最後一部分則將負二價配位基引進銥金屬錯合物,與一中性配位基以及一負一價的配位基組合,形成電中性錯合物,有別於傳統正三價的銥金屬搭配三個負一價的雙牙配位基。以錯合物2.4c與2.4d為摻雜客體製備元件,可得最大元件效率18.1% (59.0 cd/A、38.6 lm/W) 與16.6% (53.3 cd/A、33.5 lm/W),開發了新穎而且具應用潛力的磷光材料。


    Organic light-emitting diodes (OLEDs) fabricated employing the heavy transition metal complexes as phosphors are playing a pivotal role in next generation flat panel displays and solid-state lighting applications. Consequently, third-row transition-metal such as Os(II), Pt(II) and Ir(III) based phosphorescent complexes would offer an obvious advantage over traditional fluorescent materials. This is due to the feasibility of achieving unitary internal efficiency for electroluminescence, caused by effective harvest of both singlet and triplet excitons. In this thesis, therefore, we focus on the design and synthesis of noval transition-metal phosphors.
    In part I, we reported a new series of Os(II) complexes bearing tridentate 2,6-di(pyrazol-3-yl)pyridine chelate. The functionalized pz2py offers several practical advantages, including its facile preparation and high activity toward the Os(II) source material such that the products can be isolated in higher yields. Among all Os(II) complexes synthesized, PPh2Me substituted complex 2.1b is highly emissive in both solution and solid state, due mainly the much destabilized 3MC dd quenching state. As a result, the high efficient, stable, and yellow emitting Os(II) complex could be achieved.
    In part II, we have develpoed the Os(II) phospors with NIR emission induced by LLCT transition. The NIR emitting complex 2.2b was prepared via self-assembling of nentral bpy and dianionic bitz chelate on the Os(II) metal center. The NIR OLED comprising complex 2.2b was fabricated with a simplified structure. In addition, the successful fabrication of > 800 nm NIR OLED in this part makes feasible the future design of more robust Os(II) complexes toward highly efficient NIR emission of > 800 nm.
    In part III, Pt(II) metal complexes [Pt(C^C)(X^X)] comprising three functional dianionic azolate chelates, together with three different charge-neutral dicarbene chelates were synthesized and found to show bright solid-state emission depending on the associated X^X and C^C chelates. The OLED device comprising complex 2.3f afforded sky blue emission with high efficiency (8.9%, 19.4 cd·A−1 and 22.5 lm·W−1).
    Finally, a new series of Ir(III) metal-based phosphors with three bidentate chelates that consist of diimine, cyclometalate, and bis-pyrazolate were synthesized and characterized. A double emitting layer design was adopted in the device architecture using Ir(III) metal complexes 2.4c and 2.4d, achieving peak external quantum efficiencies of 18.1% (59.0 cd/A and 38.6 lm/W) and 16.6% (53.3 cd/A and 33.5 lm/W), respectively. This work showcases rare examples of three distinctive chelates (i.e., neutral, anionic, and dianionic) assembled around the central Ir(III) cation, and it provides guidelines for future development of emissive Ir(III) complexes with relevant design of ancillaries, extending the scope of third-row transition-metal based phosphors for OLED applications.

    第一章、 導論 2 1.1 前言 2 1.2 OLED元件原理 5 1.3 螢光與磷光發光原理 7 1.4 電激發光路徑 9 1.5 主客體能量轉移 11 1.6 磷光材料 14 1.7 本文目的 14 第二章、 實驗部分 15 2.1 藥品與試劑 15 2.2 分析工具 15 2.2.1 核磁共振光譜 (Nuclear Magnetic Resonance, NMR) 15 2.2.2 質譜分析 (Mass Spectrometer, MS) 16 2.2.3 元素組成分析 (Elemental Analysis, EA) 16 2.2.4 X-ray 單晶繞射 (X-ray Single Crystal Diffractometer, XRD) 16 2.2.5 紫外可見光光譜儀 (Ultraviolet-Visible spectrometer, UV-Vis) 16 2.2.6 螢光光譜儀 (Fluorescence Spectrophotometer, PL) 17 2.2.7 循環伏安計 (Cyclic Voltammetry, CV) 17 2.2.8 理論計算方法 17 2.2.9 元件製作 17 2.3 配位基之合成 19 2.3.1 Tridentate Ligand 之合成 19 2.3.2 Dianionic Ligands之合成 20 2.3.3 Dicarbene Ligands之合成 23 2.4 錯合物之合成 26 2.4.1 Os(II) Complexes Bearing Tridentate pz2py Chelate 26 2.4.2 NIR Emitting Os(II) Complexes Containing a Biazolate Ligand 31 2.4.3 Pt(II) Phosphors Featuring Both Dicarbene and Functional Biazolate Chelates 35 2.4.4 Ir(III) Complexes With Biazolate Ancillaries 41 第三章、 結果與討論 45 3.1 Os(II) Complexes Bearing Tridentate pz2py Chelate 45 3.1.1 錯合物合成討論 46 3.1.2 錯合物的晶體結構解析 49 3.1.3 鋨金屬錯合物的光物理性質探討 61 3.1.4 錯合物的電化學性質 65 3.1.5 錯合物的理論計算結果與討論 67 3.1.6 元件製備與探討 71 3.1.7 第一部分結論 77 3.2 NIR Emitting Os(II) Complexes Containing a Biazolate Ligand 78 3.2.1 錯合物合成與討論 78 3.2.2 錯合物的晶體結構解析 80 3.2.3 光物理性質探討 89 3.2.4 電化學性質探討 92 3.2.5 理論計算結果與討論 94 3.2.6 元件製備與探討 97 3.2.7 第二部分結論 99 3.3 Pt(II) Phosphors Featuring Both Dicarbene and Functional Biazolate Chelates 100 3.3.1 錯合物合成與討論 100 3.3.2 錯合物晶體結構解析 103 3.3.3 錯合物光物理性質討論 112 3.3.4 錯合物電化學性質 116 3.3.5 錯合物理論計算 119 3.3.6 元件製備與討論 123 3.3.7 第三部分結論 126 3.4 Ir(III) Complexes With Biazolate Ancillaries 127 3.4.1 錯合物合成探討 127 3.4.2 錯合物晶體結構解析 130 3.4.3 光物理性質討論 139 3.4.4 錯合物電化學性質 141 3.4.5 錯合物理論計算 143 3.4.6 元件製備與討論 148 3.4.7 第四部分結論 151 附錄一、正文錯合物的核磁共振光譜 152 附錄二、未收錄於正文的錯合物 174 銥金屬錯合物 174 參考文獻 184

    1. M. C. A. Bernanose , P. Vouaux J. Chim. Phys., 1953, 50, 64.
    2. M. Pope, H. P. Kallmann and P. Magnante, J. Phys. Chem, 1963, 38, 2042.
    3. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913.
    4. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature, 1990, 347, 539-541.
    5. A. JabŁOŃSki, Nature, 1933, 131, 839-840.
    6. H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck and T. Fischer, Coord. Chem. Rev., 2011, 255, 2622-2652.
    7. S. R. Forrest, M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley and M. E. Thompson, Nature, 1998, 395, 151-154.
    8. (a) H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 2012, 492, 234-238; (b) Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki and C. Adachi, J. Am. Chem. Soc., 2012, 134, 14706-14709; (c) H. Nakanotani, K. Masui, J. Nishide, T. Shibata and C. Adachi, Sci. Rep., 2013, 3, 2127.
    9. (a) M. J. Leitl, F. R. Kuchle, H. A. Mayer, L. Wesemann and H. Yersin, J. Phys. Chem. A, 2013, 117, 11823-11836; (b) M. J. Leitl, V. A. Krylova, P. I. Djurovich, M. E. Thompson and H. Yersin, J. Am. Chem. Soc., 2014, 136, 16032-16038; (c) R. Czerwieniec, J. Yu and H. Yersin, Inorg. Chem., 2011, 50, 8293-8301; (d) R. Czerwieniec, K. Kowalski and H. Yersin, Dalton Trans, 2013, 42, 9826-9830.
    10. J. Shi and C. W. Tang, Appl. Phys. Lett., 1997, 70, 1665-1667.
    11. T. Förster, Annalen der Physik, 1948, 437, 55-75.
    12. D. L. Dexter, J. Chem. Phys., 1953, 21, 836-850.
    13. M. A. Baldo, D. F. O’Brien, M. E. Thompson and S. R. Forrest, Physical Review B, 1999, 60, 14422-14428.
    14. (a) B.-S. Du, J.-L. Liao, M.-H. Huang, C.-H. Lin, H.-W. Lin, Y. Chi, H.-A. Pan, G.-L. Fan, K.-T. Wong, G.-H. Lee and P.-T. Chou, Adv. Funct. Mater., 2012, 22, 3491-3499; (b) C.-H. Lin, C.-W. Hsu, J.-L. Liao, Y.-M. Cheng, Y. Chi, T.-Y. Lin, M.-W. Chung, P.-T. Chou, G.-H. Lee, C.-H. Chang, C.-Y. Shih and C.-L. Ho, J. Mater. Chem., 2012, 22, 10684-10694.
    15. (a) C. H. Lin, Y. Y. Chang, J. Y. Hung, C. Y. Lin, Y. Chi, M. W. Chung, C. L. Lin, P. T. Chou, G. H. Lee, C. H. Chang and W. C. Lin, Angew Chem Int Ed Engl, 2011, 50, 3182-3186; (b) F. M. Hwang, H. Y. Chen, P. S. Chen, C. S. Liu, Y. Chi, C. F. Shu, F. I. Wu, P. T. Chou, S. M. Peng and G. H. Lee, Inorg. Chem., 2005, 44, 1344-1353; (c) S.-C. Lo, C. P. Shipley, R. N. Bera, R. E. Harding, A. R. Cowley, P. L. Burn and I. D. W. Samuel, Chem. Mater, 2006, 18, 5119.
    16. (a) H.-Y. Hsieh, C.-H. Lin, G.-M. Tu, Y. Chi and G.-H. Lee, Inorg. Chim. Acta, 2009, 362, 4734-4739; (b) J. A. G. Williams, Top. Curr. Chem., 2007, 281, 205-268.
    17. (a) P.-T. Chou, Y. Chi, M.-W. Chung and C.-C. Lin, Coord. Chem. Rev., 2011, 255, 2653-2665; (b) S. Y. Chang, Y. M. Cheng, Y. Chi, Y. C. Lin, C. M. Jiang, G. H. Lee and P. T. Chou, Dalton Trans, 2008, 6901-6911; (c) H. Yersin, Top. Curr. Chem., 2004, 241, 1-26.
    18. (a) X. K. Liu, Z. Chen, J. Qing, W. J. Zhang, B. Wu, H. L. Tam, F. Zhu, X. H. Zhang and C. S. Lee, Adv. Mater., 2015, 27, 7079-7085; (b) D. Zhang, L. Duan, Y. Li, D. Zhang and Y. Qiu, J. Mater. Chem. C, 2014, 2, 8191-8197; (c) Y. J. Cho, K. S. Yook and J. Y. Lee, Sci. Rep., 2015, 5, 7859.
    19. R. Ziessel, Tetrahedron Lett., 1989, 30, 463-466.
    20. Y.-L. Tung, P.-C. Wu, C.-S. Liu, Y. Chi, J.-K. Yu, Y.-H. Hu, P.-T. Chou, S.-M. Peng, G.-H. Lee, Y. Tao, A. J. Carty, C.-F. Shu and F.-I. Wu, Organometallics, 2004, 23, 3745-3748.
    21. Y. M. Cheng, G. H. Lee, P. T. Chou, L. S. Chen, Y. Chi, C. H. Yang, Y. H. Song, S. Y. Chang, P. I. Shih and C. F. Shu, Adv. Funct. Mater., 2008, 18, 183-194.
    22. (a) C. C. Chou, K. L. Wu, Y. Chi, W. P. Hu, S. J. Yu, G. H. Lee, C. L. Lin and P. T. Chou, Angew Chem Int Ed Engl, 2011, 50, 2054-2058; (b) M. T. Ashby, S. S. Alguindigue, J. D. Schwane and T. A. Daniel, Inorg. Chem., 2001, 40, 6643-6650.
    23. Y.-C. Chiu, J.-Y. Hung, Y. Chi, C.-C. Chen, C.-H. Chang, C.-C. Wu, Y.-M. Cheng, Y.-C. Yu, G.-H. Lee and P.-T. Chou, Adv. Mater., 2009, 21, 2221-2225.
    24. S. J. Su, D. Tanaka, Y. J. Li, H. Sasabe, T. Takeda and J. Kido, Org. Lett., 2008, 10, 941-944.
    25. C.-H. Chang, C.-L. Ho, Y.-S. Chang, I. C. Lien, C.-H. Lin, Y.-W. Yang, J.-L. Liao and Y. Chi, J. Mater. Chem. C, 2013, 1, 2639.
    26. (a) T. Peng, Y. Yang, Y. Liu, D. Ma, Z. Hou and Y. Wang, Chem. Comm., 2011, 47, 3150-3152; (b) W. Y. Wong, G. J. Zhou, X. M. Yu, H. S. Kwok and B. Z. Tang, Adv. Funct. Mater., 2006, 16, 838-846.
    27. C.-H. Chang, C.-C. Chen, C.-C. Wu, S.-Y. Chang, J.-Y. Hung and Y. Chi, Org. Electron., 2010, 11, 266-272.
    28. V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade and S. R. Forrest, Org. Electron., 2003, 4, 77-87.
    29. H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz and J. Kido, Adv. Mater., 2010, 22, 5003-5007.
    30. C.-H. Chang, Y.-H. Lin, C.-C. Chen, C.-K. Chang, C.-C. Wu, L.-S. Chen, W.-W. Wu and Y. Chi, Org. Electron., 2009, 10, 1235-1240.
    31. Y. S. Yeh, Y. M. Cheng, P. T. Chou, G. H. Lee, C. H. Yang, Y. Chi, C. F. Shu and C. H. Wang, Chemphyschem, 2006, 7, 2294-2297.
    32. P.-C. Wu, J.-K. Yu, Y.-H. Song, Y. Chi, P.-T. Chou, S.-M. Peng and G.-H. Lee, Organometallics, 2003, 22, 4938-4946.
    33. J. R. Sommer, A. H. Shelton, A. Parthasarathy, I. Ghiviriga, J. R. Reynolds and K. S. Schanze, Chem. Mater., 2011, 23, 5296-5304.
    34. Y. Hamada, H. Kanno, T. Tsujioka, H. Takahashi and T. Usuki, Appl. Phys. Lett., 1999, 75, 1682-1684.
    35. (a) Y. Unger, A. Zeller, S. Ahrens and T. Strassner, Chem. Comm., 2008, 3263-3265; (b) H. Uesugi, T. Tsukuda, K. Takao and T. Tsubomura, Dalton Trans, 2013, 42, 7396-7403.
    36. Y. Unger, A. Zeller, M. A. Taige and T. Strassner, Dalton Trans, 2009, 4786-4794.
    37. O. S. Wenger, Chem. Rev., 2013, 113, 3686-3733.
    38. M. Albrecht, J. R. Miecznikowski, A. Samuel, J. W. Faller and R. H. Crabtree, Organometallics, 2002, 21, 3596-3604.
    39. S. Ahrens and T. Strassner, Inorg. Chim. Acta, 2006, 359, 4789-4796.
    40. (a) L. Chassot, E. Mueller and A. Von Zelewsky, Inorg. Chem., 1984, 23, 4249-4253; (b) J. A. Bailey, V. M. Miskowski and H. B. Gray, Inorg. Chem., 1993, 32, 369-370; (c) D. Bandyopadhyay, P. Bandyopadhyay, A. Chakravorty, F. A. Cotton and L. R. Falvello, Inorg. Chem., 1983, 22, 1315-1321.
    41. A. F. Rausch, L. Murphy, J. A. Williams and H. Yersin, Inorg. Chem., 2012, 51, 312-319.
    42. P. T. Chou and Y. Chi, Chem. Eur. J, 2007, 13, 380-395.
    43. C. F. Chang, Y. M. Cheng, Y. Chi, Y. C. Chiu, C. C. Lin, G. H. Lee, P. T. Chou, C. C. Chen, C. H. Chang and C. C. Wu, Angew Chem Int Ed Engl, 2008, 47, 4542-4545.
    44. Y. Liu, M. S. Liu and A. K. Y. Jen, Acta Polym., 1999, 50, 105-108.
    45. (a) G. Xie, Y. Meng, F. Wu, C. Tao, D. Zhang, M. Liu, Q. Xue, W. Chen and Y. Zhao, Appl. Phys. Lett., 2008, 92, 093305; (b) S. J. Yoo, J. H. Chang, J. H. Lee, C. K. Moon, C. I. Wu and J. J. Kim, Sci. Rep., 2014, 4, 3902.
    46. J.-H. Lee, S.-H. Cheng, S.-J. Yoo, H. Shin, J.-H. Chang, C.-I. Wu, K.-T. Wong and J.-J. Kim, Adv. Funct. Mater., 2015, 25, 361-366.
    47. C. Schmitz, H.-W. Schmidt and M. Thelakkat, Chem. Mater., 2000, 12, 3012-3019.
    48. (a) J. Li, P. I. Djurovich, B. D. Alleyne, I. Tsyba, N. N. Ho, R. Bau and M. E. Thompson, Polyhedron, 2004, 23, 419-428; (b) A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau and M. E. Thompson, J. Am. Chem. Soc., 2003, 125, 7377-7387.
    49. (a) K. A. King, P. J. Spellane and R. J. Watts, J. Am. Chem. Soc., 1985, 107, 1431-1432; (b) S. Sprouse, K. A. King, P. J. Spellane and R. J. Watts, J. Am. Chem. Soc., 1984, 106, 6647-6653.
    50. (a) C. Stinner, M. D. Wightman, S. O. Kelley, M. G. Hill and J. K. Barton, Inorg. Chem., 2001, 40, 5245-5250; (b) S. Soman, J. C. Manton, J. L. Inglis, Y. Halpin, B. Twamley, E. Otten, W. R. Browne, L. De Cola, J. G. Vos and M. T. Pryce, Chem. Commun., 2014, 50, 6461-6463.
    51. (a) A. M'Hamedi, A. S. Batsanov, M. A. Fox, M. R. Bryce, K. Abdullah, H. A. Al-Attar and A. P. Monkman, J. Mater. Chem., 2012, 22, 13529; (b) C. Xu, H. M. Li, Z. Q. Xiao, Z. Q. Wang, S. F. Tang, B. M. Ji, X. Q. Hao and M. P. Song, Dalton Trans, 2014, 43, 10235-10247.
    52. (a) M. V. Werrett, D. Chartrand, J. D. Gale, G. S. Hanan, J. G. MacLellan, M. Massi, S. Muzzioli, P. Raiteri, B. W. Skelton, M. Silberstein and S. Stagni, Inorg. Chem., 2011, 50, 1229-1241; (b) D. P. Rillema, A. J. Cruz, C. Moore, K. Siam, A. Jehan, D. Base, T. Nguyen and W. Huang, Inorg. Chem., 2013, 52, 596-607.
    53. M. Tavasli, T. N. Moore, Y. Zheng, M. R. Bryce, M. A. Fox, G. C. Griffiths, V. Jankus, H. A. Al-Attar and A. P. Monkman, J. Mater. Chem., 2012, 22, 6419.

    QR CODE