研究生: |
朱冠禎 Chu, Kuan Chen |
---|---|
論文名稱: |
高能量摻鉺光纖鎖模振盪器之不同操作模態研究 A study of different operation modes of a high-energy mode-locked erbium fiber oscillator |
指導教授: |
楊尚達
Yang, Shang Da |
口試委員: |
項維巍
Hsiang, Wei Wei 楊尚達 Yang, Shang Da 李穎玟 Lee, Yin Wen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 33 |
中文關鍵詞: | 摻餌光纖雷射 、被動鎖模雷射 、自相似子產生 、自相似脈衝形成 、高尖峰功率 、高脈衝能量 |
外文關鍵詞: | erbium-doped fiber laser, passive mode-locked laser, similariton generation, self-similar pulse evolution, high peak power, high pulse energy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文展示了一組30米長的摻鉺光纖製成的正色散光纖振盪器在不同操作模態下的量測。最高能量(中心波長位於1568奈米)與最寬頻譜(中心波長位於1579奈米)分別為33奈焦耳及60奈米,使用超短脈衝塑形器壓縮輸出的脈衝序列分別壓縮至150.5飛秒及116.4飛秒。在高能量模態下使用效率36%的雙程光柵對,33奈焦耳的脈衝序列被壓縮至155.8飛秒的脈衝寬,在次脈衝或背景光雜訊不存在的狀況下使脈衝序列達到47千瓦的尖峰功率,為目前摻鉺光纖震盪器的世界紀錄。我們也透過如二倍頻產生、長距離自相干涉訊號量測、射頻頻譜分析等等的方式監測脈衝序列的品質,發現存在於高能量脈衝序列中的次脈衝及背景光雜訊,而透過降低泵浦及調整腔內偏振態,可以產生較為乾淨的脈衝序列。
A normal dispersion fiber oscillator with 30-m-long erbium-doped gain fiber was demonstrated in different operation modes. The highest pulse energy and the broadest spectral width were 33 nJ and 60 nm (centered at 1568 nm and 1579 nm), respectively. The output pulses of high-energy and broad-bandwidth modes were compressed to the corresponding Fourier transform limits by an ultrashort pulse shaper, achieving 150.5 fs and 116.4 fs, respectively. On the other hand, a double-pass grating pair compressed the 33 nJ pulse to 155.8 fs with 36% throughput. This would enable a record peak power of 47 kW (for erbium-doped fiber oscillators) if the pulse train is free of undesired sub-pulses or background. We also investigated the pulse train quality by a series of experiments, such as second-harmonic generation, long-range intensity autocorrelation, and radio-frequency spectrum measurement, showing that the high-energy pulse train could be subject to significant sub-pulses or background noise. A cleaner pulse train could be obtained at lower pump power by changing the intracavity polarization states.
[1] A. Chong, W. H. Renninger, and F. W. Wise, "Properties of normal-dispersion femtosecond fiber lasers," J. Opt. Soc. Am. B 25, 9 (2008).
[2] N. B. Chichkov, K. Hausmann, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, "50 fs pulses from an all-normal dispersion erbium fiber oscillator," Opt. Lett. 35, 3 (2010).
[3] H. Jeong, S. Y. Choi, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, and D.-I. Yeom, "All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber," Opt. Express 22, 6 (2014).
[4] B. Oktem, C. Üdülgür, and F. Ö. Ilday, "Soliton-similariton fibre laser," Nat. Photonics 4, 5 (2010).
[5] A. Ruehl, O. Prochnow, D. Wandt, and D. Kracht, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 31, 3 (2006).
[6] D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, "Wave breaking in nonlinear-optical fibers," J. Opt. Soc. Am. B 9, 4 (1992).
[7] A. F. J. Runge, N. G. R. Broderick, and M. Erkinyalo, "Observation of soliton explosions in a passively mode-locked fiber laser," Optica 2, 4 (2015).
[8] A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, and M. Erkintalo, "Raman rogue waves in a partially mode-locked fiber laser," Opt. Lett. 39, 4 (2014).
[9] M. Horowitz and Y. Silberberg, "Control of Noiselike Pulse Generation in Erbium-Doped Fiber Lasers," IEEE Photonics Technol. Lett. 10, 3 (1998).
[10] M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," Opt. Lett. 22, 3 (1997).
[11] C. Aguergaray, A. Runge, M. Erkintalo, and N. G. R. Broderick, "Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability," Opt. Lett. 38, 3 (2013).
[12] F. W. Wise, A. Chong, and W. H. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser & Photon. Reviews 2, 16 (2008).
[13] W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 4 (2008).
[14] J. R. Buckley, F. W. Wise, F. Ö. Ilday, and T. Sosnowski, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 3 (2005).
[15] F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 4 (2004).
[16] W. H. Renninger, A. Chong, and F. W. Wise, "Self-similar pulse evolution in an all-normal-dispersion laser," Phys. Rev. A 82, 4 (2010).
[17] S. Lefrancois, C.-H. Liu, M. L. Stock, A. Galvanauskas, T. S. Sosnowski, and F. W. Wise, "High-energy similariton fiber laser using chirally coupled core fiber," Opt. Lett. 38, 3 (2013).
[18] O. Pottiez, B. Ibarra-Escamilla, E. A. Kuzin, J. C. Hernández-García, A. González-García, and M. Durán-Sánchez, "Multiple noise-like pulsing of a figure-eight fibre laser," Laser Phys. 24, 9 (2014).
[19] H. Santiago-Hernandez, O. Pottiez, R. Paez-Aguirre, H. E. Ibarra-Villalon, A. Tenorio-Torres, M. Duran-Sanchez, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, "Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser," Laser Phys. 25, 45106 (2015).
[20] F. Li, P. K. A. Wai, and J. N. Kutz, "Geometrical description of the onset of multi-pulsing in mode-locked laser cavities," J. Opt. Soc. Am. B 27, 10 (2010).
[21] A. M. Weiner, Ultrafast Optics (Wiley, 2009).
[22] D. v. Linde and F. Physik, "Characterization of the Noise in Continuously Operating Mode-Locked Lasers," Appl. Phys. B 39, 17 (1986).
[23] R. Paschotta, "Timing jitter and phase noise of mode-locked fiber lasers," Opt. Express 18, 14 (2010).
[24] B. R. Washburn and N. R. Newbury, "Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber," Opt. Express 12, 10 (2004).
[25] H.-W. Chen, C.-L. Tsai, L.-F. Yang, M.-H. Lin, K.-C. Chu, and S.-D. Yang, "Erbium Fiber OscillatorWith an Intracavity Pulse Shaper for High-Energy Low-Pedestal Wavelength-Tunable Femtosecond Pulse Generation," J. Lightw. Technol. 32, 6 (2014).
[26] M. Tang, H. Wang, R. Becheker, J.-L. Oudar, D. Gaponov, T. Godin, and A. Hideur, "High-energy dissipative solitons generation from a large normal dispersion Er-fiber laser," Opt. Lett. 40, 4 (2015).
[27] M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Harter, "Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate," Opt. Lett. 22, 3 (1997).
[28] E. Yoshida and M. Nakazawa, "Measurement of the Timing Jitter and Pulse Energy Fluctuation of a PLL Regeneratively Mode-Locked Fiber Laser," IEEE Photonics Technol. Lett. 11, 3 (1999).
[29] K. S. Abedin, J. T. Gopinath, L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, "Self-stabilized passive, harmonically mode-locked stretched-pulse erbium fiber ring laser," Opt. Lett. 27, 3 (2002).
[30] J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kärtner, "High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser," Opt. Lett. 32, 3 (2007).
[31] H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, "High-repetition-rate, 491 MHz, femtosecond fiber laser with low timing jitter," Opt. Lett. 33, 3 (2008).
[32] I. L. Budunoğlu, C. Ülgüdür, B. Oktem, and F. Ö. Ilday, "Intensity noise of mode-locked fiber lasers," Opt. Lett. 34, 3 (2009).