研究生: |
郝旭昶 Hao, Hsu-Chang |
---|---|
論文名稱: |
氣相與液相表面聲波感測器元件與系統之研究、製作及開發 Investigation, Fabrication and Development of Surface Acoustic Wave Sensor Chip and System in gas and liquid |
指導教授: |
饒達仁
Yao, Da-Jeng |
口試委員: |
許宗雄
鄭桂忠 詹宇鈞 李承龍 劉奕汶 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 表面聲波 、高分子聚合物 、抗體 、蛋白質 、階層式群集分析法 |
外文關鍵詞: | Surface Acoustic Wave, Polymer, antibody, protein, Hierarchical Clustering Analysis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究致力於開發陣列式表面聲波(Surface Acoustic Wave, SAW)氣相與液相量測系統,晶片材料的選擇上,本文選用高K2值之128º YX-LiNbO3 與YX-LiNbO3壓電基板,在其上製作指叉換能器(Interdigital Transducer, IDT),並將多種高分子聚合物或抗體固定修飾於感測區之上。將做好之晶片配合製作出之震盪電路,在以主動式之量測機制下,再結合感測環境系統以量測特定溶劑之揮發性氣體與特定生物檢體,經固定之薄膜捕捉標的物造成重量變化,導致表面聲波傳遞速度改變,由此觀察頻率飄移的下降量。
氣體感測器方面:利用1L四頸瓶系統以七種高分子薄膜對甲醇、乙醇、氨、三甲基胺、丙酮之量測,確定了陣列化的可行性,以長條圖、雷達圖做分析,可得知每種膜在不同測試條件下之反應特性,建立簡單的資料庫,利用異丙醇氣體模擬一未知氣體,進入感測系統,經過2-way階層式群集分析法(Hierarchical Clustering Analysis)及樹狀圖分析後,可正確地將異丙醇氣體與已知醇類歸為同一群集,並與胺類氣體分開為兩大群集,丙酮則被歸類為較靠近醇類之群集。
液體感測器方面:利用矽烷化的方式修飾SiO2表面,成功抗固定體於3 -aminopropyl triethoxy lsilane (ATPES)表面。連續式注入偵測蛋白質濃度由250~3μg/ml。捕捉標定細胞方面,在藉由光學與螢光影像,瞭解抗體固定後具有活性且在特定細胞濃度(K562、106 cell/ml; Jurkat、103 cell/ml) 1000:1下,成功的捕捉到標的細胞導致SH-SAW細胞感測器的頻率下降。
This thesis gives a historical account of the development, and the theory of piezoelectric phenomenon, Rayleigh wave, shear horizontal plate wave, interdigital transducer (IDT), surface acoustic wave (SAW), performance criteria and device for application in sensor. The detection results for organic vapors by different polymer deposited on 128° YX-LiNbO3 surface acoustic wave (SAW) delay lines are studied in this work. The gas sensor array is based on 2×2 non-continuously working oscillators equipped with differently polymer-coated surface acoustic wave sensors.The SAW detection system which is employed to detect various organic molecules and bio-sample was prepared using two-port SAW resonators and a computer for signal acquisition and data process.
This gas sensor array system consists of SAW sensors, polymers with different polarity and function groups, and signal readout electronics. The appropriate coating materials on to the SAW crystal would be used for gas detection. The gas sensing properties of polymer film, deposited onto 1280YX-LiNbO3 substrate, have been monitored shift in frequency by SAW delay lines and analysis the properties of the gas sensor. The good result of tree-view from the two-way hierarchical clustering analysis is studied in this work after comparing the correlation between the coating materials and organic vapors. Furthermore, the SAW detection system can distinguish unknown gas or mixed gas by the database of pattern recognition in the future.
The Rayleigh-wave presents the very high decay and the SH-SAW presents a less energy decay when operating in liquid phase. For this reason, the SH-SAW device is selected to be used in gaseous and liquid phase application and The Y360-X LiTaO3 was selected as the substrate of the SH-SAW sensor chip. we developed an SH-SAW sensor to detect ipaB molecules by means of the antibody–antigen binding mechanism. The sensor showed stable relationship between its the oscillation frequency and the ipaB concentration in a protein solution. A SiO2 layer was on both the IDTs and the sensing area. The SiO2 waveguide used in these devices can be easily functionalized with 3-aminopropyltriethoxysilane (APTES) and to detect protein concentrations as low as 3 μg / ml. To replace the sensor surface antibody, the cell isolation and purification studied targeted cells (Jurkate), as a model for low abundance cells (1 ∶1,000), with more dilute cells as the ultimate goal. T cells were successfully separated on-chip from the mixed cell medium (Jurkate cells/ K562 cells, 1/1000). The results are quite promising and the developed SH-SAW sensor can be applied to the detection of various protein molecules with different antibody immobilization layers while maintaining all the beauties of general SAW sensors.
1. C. Di Natale, A.M., E. Martinelli, R. Paolesse, E. Proietti, and A. D’Amico, The Evaluation of Quality of Post-harvest Oranges and Apples by Means of an Electronic Nose. Sensors and Actuators B: Chemical, 2001. vol. B78: p. 26–31.
2. E. L. Hines, E.L., and J. W. Gardner, Neural network based electronic nose for apple ripeness determination. Electronics Letters, 1999. 35: p. 821–822.
3. E. Llobet, E.L.H., J. W. Gardner, and S. Franco, Non-destructive banana ripeness determination using a neural network-based electronic nose. Measurement Science and Technology, 1999. 10: p. 538–547.
4. Gardner, J.W., et al., An electronic nose system for monitoring the quality of potable water. Sensors and Actuators B: Chemical, 2000. 69(3): p. 336-341.
5. H. W. Shin, E.L., J. W. Gardner, E. L. Hines, and C. S. Dow, Classification of the strain and growth phase of cyanobacteria in potable water using an electronic nose system. IEE Proceedings-Science Measurement and Technology, 2000. vol. 147(4): p. 158–164.
6. J. W. Gardner, M.C., C. Dow, and E. L. Hines, The prediction of bacteria type and culture growth phase by an electronic nose with a multi-layer perception network. Measurement Science and Technology, 1998. vol. 9: p. 120–127.
7. J. W. Gardner, E.L.H., F. Molinier, P. N. Bartlett, and T. T. Mottram, Prediction of health of dairy cattle from breath samples using neural network with parametric model of dynamic response of array of semiconducting gas sensors. IEE Proceedings-Science Measurment and Technology, 1999. vol. 146(2): p. 102–106.
8. J. W. Gardner, H.W.S., and E. L. Hines, An electronic nose system to diagnose illness. Sensors and Actuators B: Chemical, 2000. vol. B70: p. 19–24.
9. Y. –J. Lin, H.R.G., Y. –H. Chang, M. –T. Kao, H. –H. Wang, and R. –I Hong, Application of the Electronic Nose for Uremia Diagnosis. Sensors and Actuators B: Chemical, 2001. vol. B76: p. 177–180.
10. W. Gopel, et al., Biosens. Bioelectron, 1998. 13: p. 479-493.
11. 雷文剛, 董瑞安, and 蔡曉忠, 生物感測器在環境監測上的應用. 儀器新知, 1997. 19(2).
12. Moncrieff, R.W., An instrument for measuring and classifying odours. J. Appl. Physiol., 1961. vol. 16: p. 742.
13. Hatman, W.F.W.a.A.D., An electronic analog for the olfactory processes. Ann. NY Acad. Sci., 1964. vol. 116: p. 608.
14. T. M. Buck, F.G.A., and M. Dalton, Detection of chemical species by surface effects on metals and semiconductors. Surface Effects in Detection, 1965.
15. Dodd, K.P.a.G.H., Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose. Nature, 1982. vol. 299: p. 352–355.
16. J. W. Gardner, P.N.B., G. H. Dodd, and H. V. Shurmer, Pattern recognition in the Warwick Electronic Nose. 8th Int. Congress of European Chemoreception Research Organisation, 1987.
17. Gardner, P.N.B.a.J.W., Sensors and Sensory Systems for an Electronic Nose. NATO ASI Series E: Applied Sciences, 1992. vol. 212.
18. H. Abe, T.Y.Y., S. Kanaya, Y. Takabashi, Y. Miyashita, and S. Sasaki, Automated odor-sensing system based on plural semiconductor gas sensors and computerized pattern recognition techniques. Anal. Chim. Acta, 1987. vol. 194: p. 1–9.
19. Hoffheins, B.S., Using sensor arrays and pattern recognition to identify organic compounds. MS Thesis, 1989.
20. Shurmer, J.W.G.a.H.V., Intelligent vapour discrimination using a composite 12-element sensor array. Sensors and Actuators B: Chemical, 1990. vol. B1: p. 256–260.
21. Aishima, T., Aroma discrimination by pattern recognition analysis of responses from semiconductor gas sensor arrays. J. Agri. Food Chem., 1991. vol. 39: p. 752–756.
22. Persaud, K.C., Electronic gas and odour detectors that mimic chemoreception in animals. Trends Anal. Chem., 1992. vol. 11: p. 61–67.
23. J. M. Slater, J.P., and E. J. Watt, Multi-layer conducting polymer gas sensor arrays for olfactory sensing. Analyst, 1993. vol. 118: p. 379–384.
24. T. C. Pearce, J.W.G., S. Friel, P. N. Bartlett, and N. Blair, Electronic nose for monitoring the flavour of beers. Analyst, 1993. vol. 118: p. 371–377.
25. M. S. Freund, a.N.S.L., A chemically diverse conducting polymer-based electronic nose. Proc. Natl. Acad. Sci., 1995. vol. 92: p. 2652.
26. N. Taguchi, Patent 45-38200. 1962.
27. T. Seiyama, et al., A new detector for gaseous components using semi-conductive thin films. Anal. Chem., 1962. 34: p. 1502-1503.
28. T. C. Pearce, et al., Handbook of Machine Olfaction: electronic nose technology. 2003.
29. A. Dall’Olio, et al., Acad. Sci. Paris Ser. C, 1968. 267: p. 433-435.
30. G. Bidan, Electroconducting conjugated polymers: new sensitive matrices to build up chemical or electrochemical sensors. A review. Sens. Actuators B, 1992. 6: p. 45-56.
31. H. Baltes, D.L., and A. Koll, The electronic nose in Lilliput. IEEE Spectrum, 1998: p. 35.
32. K. S. Suslick and N. A. Rakow, Colorimetric sensor arrays for molecular recognition. Tetrahedron, 2004. 60: p. 11133-11138.
33. T. A. Dickinson, K.L.M., J. S. Kauer, and D. R. Walt, Convergent, self-encoded bead sensor arrays in the design of an artificial nose. Analytical Chemistry, 1999. vol. 71: p. 2192–2198.
34. T. A. Dickinson, J.W., and D. R. Walt, Nature, 1996. vol. 382: p. 697.
35. Frank Ro¨ck, Nicolae Barsan, and U. Weimar, Electronic Nose: Current Status and Future Trends. Chem. Rev., 2008. 108: p. 705-725.
36. J. M. Slater, a.E.J.W., Analyst, 1991. vol. 116: p. 1125.
37. J. M. Slater, a.J.P., Analyst, 1994. vol. 119: p. 191.
38. R. Polikar, R.S., V. Honavar, L. Udpa, and M. Porter, Detection and identification of odorants using an electronic nose. Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2001, 2001.
39. D. S. Ballantine, S.L.R., J. W. Grate, and H. Wohltjen, Analytical Chemistry, 1986. vol. 58: p. 3058.
40. M. Ohnishi, T.I., Y. Kijima, C. Ishimoto, and J. Seto, Sensors Mater., 1992. vol. 4(1): p. 53.
41. D.S. Ballantine, Acoustic wave sensors: theory, design, and physico- chemical applications. 1997.
42. 吳宗正, 壓電晶體生物感測器之研究與其應用. 台灣大學農業化學研究所,碩士論文, 1990.
43. T. Alizadeh and S. Zeynali, Electronic nose based on the polymer coated SAW sensors array for the warfare agent simulants classification. Sensors and Actuators B: Chemical, 2008. 129: p. 412-423.
44. M. Rapp, et al., New miniaturized SAW-sensor array for organic gas detection driven by multiplexed oscillators. Sensors and Actuators B: Chemical, 2000. 65(169-172).
45. L.C. Clark , C.L., Electrode system for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 1962. 102: p. 29-33.
46. Dong GC, C.P., Forrest MD, Lin YC, Chen HM., Immuno-suppressive effect of blocking the CD28 signaling pathway in T-cells by an active component of Echinacea found by a novel pharmaceutical screening method. J Med Chem, 2006. 49(6):: p. 1845-54.
47. Bohne F, C.M., Ebert G, Wiegmann K, Kürschner T, Schulze A, Urban S, Krönke M, Abken H, Protzer U., T cells redirected against hepatitis B virus surface proteins eliminate infected hepatocytes. Gastroenterology, 2007. 134(1): p. 239-47.
48. 陳惠民. and 張哲魁, 用於生物醫學的新蛋白質晶片技術的開發與製造, in 國家奈米元件實驗室2006.
49. Brown PO and Botstein D, Exploring the new world of the genome with DNA microarray. Suppl Nat Genet, 1999. 21: p. 33-37.
50. J. J. Crs, C.A.R.-T., D. A. Nivens, F. S. Ligler., Comparison of Chemical Cleaning Method of Glass in Preparation for Silanization. Biosensor and Bioelectronics,, 1999. 14: p. 683-688.
51. L. Rayleigh, On waves propagated along the plane surface of an elastic solid. Proc. London Math. Soc., 1885. 17: p. 4.
52. R. M. White, Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett., 1965. 7: p. 314-316.
53. J. J. Campbell, A method for estimation estimation optical crystal cuts and propagation directions for excitation of piezoelectric surface waves. IEEE Trans. Son. Ultrason, 1968. 15.
54. A. H. Fahmy, Propagation of acoustic surface waves in multilayers:A matrix description. Appl. Phy. Lett., 1973. 22: p. 495-497.
55. B. Drafts, Acoustic wave technology sensors. IEEE TRANSACTIONS ON MiCROWAVE THEORY AND TECHNIQUES, 2001. 49: p. 795-802.
56. B. Drafts, Acoustic wave technology sensors. IEEE Transactions on Microwave Theory and Techniques, 2001. 49(4): p. 795-802.
57. Bender, S., Temperature Stabilized Silicon Based Surface Acoustic Wave Gas sensors for the Detection of Solvent Vapors. SPIE Proceedings 1998. 3539-16: p. 123-130.
58. Bisoffi, M., et al., Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor. Biosensors and Bioelectronics, 2008. 23(9): p. 1397-1403.
59. C. Wang, X.W. He, and L. X. Chen, A piezoelectric quartz crystal sensor array self assembled calixarene bilayers for detection of volatile organic amine in gas. Talanta, 2002. 57: p. 1181-1188.
60. Y. J. Lin, Application of the electronic nose for uremia diagnosis. Sensors and Actuators B: Chemical, 2001. 76(1-3): p. 177-180.
61. J. W. Garder, V. K. Varadan, and O.O. Awadelkarim, Microsensors MEMS and Smart Devices. 2001: p. 319-334.
62. C. Campbell, Surface Acoustic Wave Devices and Their Signal Processing Applications. 1989.
63. 吳朗, 電子陶瓷/壓電1994: 全欣資訊.
64. 邱碧秀, 電子陶瓷材料1988: 徐氏基金會.
65. 高國陞, 表面聲波元件之頻率及溫度特性之研究2004: 國立中山大學,博士論文.
66. B. D. Stephen, Acoustic wave sensors:theory, design, and physico-chemical applications. 1996.
67. R. J. Baker, H. W. L., and D.E. Boyce, CMOS CIRCUIT DESIGN LAYOUT AND SIMULATION. 1997.
68. D. E. FIELD, Fluorinated Polyepoxy And Polyurethane Coatings. Naval Research Laboratory, 1976. 48: p. 615.
69. J. W. Gardner, V. K. V., and O.O. Awadelkarim, Microsensors MEMS and Smart Devices
Wiley-interscience, 1990: p. 303-306.
70. K. -y. Hashimoto, Surface Acoustic Wave Device in Telecommunications- Modeling and Simulation. 2000.
71. D. M. Pozar, Microwave engineering. 1998.
72. 李世鴻譯, 微波工程2002: 五南圖書出版社.
73. C. K. Campbell, Surface acoustic wave devices for mobile and wireless communications. 1998.
74. 楊永瑞, 以表面聲波震盪電路為基礎之生化感測系統2005: 清華大學,碩士論文.
75. R. R. Sokal and C. D. Michener, A Statistical Method for Evaluating Systematic Relationships. The University of Kansas Scientific Bulletin, 1958. 38: p. 1409-1438.
76. Eisen, M.B., Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci., 1998. 95: p. 1