簡易檢索 / 詳目顯示

研究生: 沈家傑
Chia-Chieh Shen
論文名稱: 金屬氫化特性及其在能源與材料微結構改質之應用
Characteristics of Metal Hydrides and Their Applications in Hydrogen Energy and Microstructural Modification
指導教授: 彭宗平
Tsong-Pyng Perng
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 108
中文關鍵詞: 金屬氫化物儲氫合金氣固相反應循環氫化反應LmNi5充氫量Ti-6Al-4V氫化反應等溫氫壓-濃度曲線相變化相圖晶粒細化
外文關鍵詞: metal hydride, hydrogen absorbing materials, gas-solid reaction, cyclic hydrogenation, LmNi5, hydrogen loading, Ti-6Al-4V, hydrogenation, pressure-composition isotherm, phase transformation, phase diagram, grain refinement
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究LmNi5介金屬化合物及Ti-6Al-4V (Ti64)合金之氫化特性,並分別探討其在氫能開發與材料微結構改質之應用。在第一部分中,在30℃恆溫條件,以四個充氫量如H/M=0.25, 0.50, 0.75 及1.0,及兩個充氫量如H/M=0.75 及1.0等變數,分別對LmNi5與LmNi4.8Al0.2合金施予3000次吸放氫反應,觀察其氫化穩定性。經過3000次反應後,就最大吸氫量變化而言,前者合金分別降到0.95, 0.92, 0.82 及0.74,而後者合金只降到0.89及0.87。其次,在平坦氫壓,前者合金在30℃的平坦氫壓不受低充氫量如H/M=0.25與0.50而改變,但卻因高充氫量如H/M=0.75與1.0影響而變得傾斜,顯示中間相□-LmNi5H3已形成。另一方面,後者合金在30℃與50℃的平坦氫壓保持不變,只有在70℃時有微微的傾斜,顯示後者合金因鋁對鎳元素的置換而大幅抑制中間相□-LmNi5H3的形成。再者,由X光繞射分析,前者合金的繞射峰寬幅具有非等向性粗大的現象,甚至在最大充氫量H/M=1.0的試片,發現金屬鎳的第二相生成物,而後者合金的繞射峰寬幅只有微微的等向性粗化。經由上述分析,微量的鋁取代鎳的置換具有增強LmNi5基合金的氫化循環穩定效果,而LmNi5基合金的氫化衰退過程機制可由中間相□-LmNi5H3的首先形成及隨後的相分離反應來加以定性闡述。最後,選定兩個氫化物的應用實例以瞭解氫能開發的潛力,首先,針對可攜式燃料電池對氫氣的需求,將LmNi5基氫化物製作成儲氫卡匣,經由實驗證明,儲存在氫化物內的氫能已成功地被轉換成電能;第二例子為太陽能熱水器驅動的氫化物冰水雛型機,實驗數據顯示此雛型機有下列初步的性能:一.具備將室溫的水(25℃)冷卻至19℃的能力。二.COP約為0.1。三.制冷功率約為18W。
    在第二部分中,量測並比較純Ti與Ti64合金在550℃至700℃的等溫氫壓-濃度曲線(Pressure-Composition isotherm),並以其平坦區的存在特徵來瞭解氫原子誘導此兩者材料的相變化行為。研究結果顯示:就相變化發生之誘導氫壓與氫濃度而言,相對於Ti,因Ti64內含有Al及V元素,其所需要氫壓變得較大且所需的氫濃度變得較低。其次,針對氫誘導的可逆相變化順序,Ti-H 系統具有□□□H□□H+□H□□H□□H+□□□的行為,而□相初始就存於Ti64合金內,故Ti64-H 系統則為□+□□□H+□H□□H□□H+□□□。依相圖分析顯示,Ti-H 系統具有共析反應行為(□H□□H+□),Ti64-H 系統則為擬共析反應,其原因也是因為□相初始就存在於Ti64合金所致。最後,利用此氫誘導的相變化反應對於Ti64材料微結構細化的研究結果如下:在600℃充氫量0.7H/M的氫化條件,因□H與□的形成,□基地被細化成具有三角型樹枝狀的奈米結構,同時,□2-Ti3Al的析出相也因氫化反應而伴隨存在於□基地。隨著氫化反應次數的增加,細化的程度與材料硬度也跟著增加,硬度的增加應與細化的奈米結構與□2析出相的貢獻有關。然而在750℃充氫量0.5H/M的氫化條件,經由□H的形成,卻沒有觀察到細化的微結構,可能因界面缺陷在較高溫消除所致,同時,□2析出相也因氫化反應次數增加而粗化,使硬度變低。


    Two kinds of metal hydride system: LmNi5-based intermetallic compounds and Ti-6Al-4V alloy (Ti64) were studied. Cyclic hydrogenation of LmNi5 and LmNi4.8Al0.2 alloys with different hydrogen loadings up to 3000 cycles at room temperature was conducted and compared. The hydrogen loadings at H/M = 0.25, 0.50, 0.75 and 1.0 were studied. After 3000 cycles, for LmNi5, it was observed that the maximum hydrogenation capacities were reduced to 0.95, 0.92, 0.82, and 0.74 for the loadings of 0.25, 0.50, 0.75, and 1.0, respectively, while those in LmNi4.8Al0.2 were only reduced to 0.89 and 0.87 for the loadings of 0.75 and 1.0, respectively. The plateaus in LmNi5 at T=30℃ for the loadings of 0.25 and 0.50 did not change much, but were lowered and became more sloped for the loadings of 0.75 and 1.0, indicating that the formation of an intermediate phase □-LmNi5H3 took place. On the contrary, the plateaus in LmNi4.8Al0.2 did not change much for T=30℃ and 50℃ but became slightly sloped with no observable split at 70℃, indicating that the □-LmNi5H3 might be suppressed by substitution of Al for Ni. Moreover, the X-ray diffraction patterns of LmNi5 showed anisotropic broadening of the peaks for all samples, and even the presence of some second phase for the loading of 1.0H/M. For LmNi4.8Al0.2, the peak broadenings were isotropic and relatively smaller. It was concluded that partial substitution of Ni with Al substantially improved the cyclic hydrogenation stability of LmNi4.8Al0.2 and the process of degradation might be described in terms of formation of an intermediate □-hydride phase followed by phase separation. For application of metal hydrides in hydrogen energy, a portable LmNi5–based hydride cartridge was developed, and the hydrogen energy was successfully converted to electrical power. A prototype metal hydride refrigerator driven by solar heater was developed and tested. The performance showed that (1) it had ability to refrigerate room temperature water (25℃) down to 19℃; (2) its value of COP was approximately 0.1; and (3) its refrigeration power was approximately 18W.
    In the second part, pressure-composition (P-C) isotherms from 550℃ to 700℃ in Ti and Ti64 were established and compared. Both Ti-H and Ti64-H systems exhibited two pressure plateaus in the P-C isotherms as the indicator of phase transformation. Phase transformations took place at lower hydrogen content and higher hydrogen pressure in Ti64 than in Ti due to the effect of substitutional elements Al and V. Upon hydrogenation, the Ti-H system exhibited the sequence of phase transformation □□□H□□H+□H□□H□□H+□□□, whereas the Ti64-H system showed a sequence of □+□□□H+□H□□H□□H+□□□ because of the presence of original □ phase. Partial phase diagrams for Ti-H and Ti64-H were established based on their P-C isotherms. Furthermore, grain refinement of Ti64 by repeated isothermal hydrogenation (RIH) was studied. Refined nanostructure in the □ matrix resulted mainly from the formation of triangular dendritic □H and □ by RIH treatment with a hydrogen loading of 0.7H/M at 600℃. Increasing the cycle number of RIH further refined the structure and increased the hardness. On the contrary, for RIH at 750℃ with a hydrogen loading of 0.5H/M, there was no grain refinement because of annihilation of the interface microdefects during RIH at higher temperature. Coarsening of the □2 precipitate due to increasing the cycle number further led to lower hardness.

    中文摘要 ………………………………………………………… i 英文摘要 ………………………………………………………… iii 誌謝 ………………………………………………………………vi Chapter 1 Introduction …………………………………… 1 1. Characteristics of metal hydrides …………………… 1 2. Applications of metal hydrides ……………………… 8 Chapter 2 Cyclic Hydrogenation of an LmNi5-based Alloy with Different Hydrogen Loadings …………………………13 Abstract …………………………………………………………13 Introduction ……………………………………………………14 Experimental ……………………………………………………15 Results and discussion ………………………………………16 1. Capacity degradation ………………………………………16 2. The kinetics of hydrogen absorption …………………17 3. P-C isotherm curves ………………………………………17 4. Crystal structure …………………………………………18 Conclusion ………………………………………………………19 References ………………………………………………………21 Chapter 3 On the Cyclic Hydrogenation stability of an Lm(NiAl)5-based Alloy with Different Hydrogen Loadings…27 Abstract …………………………………………………………27 Introduction ……………………………………………………28 Experimental ……………………………………………………29 Results …………………………………………………………31 1. Hydrogenation kinetics and capacity degradation …31 2. P-C isotherm curves before and after cycling ……31 3. Crystal structure …………………………………………32 Discussion ………………………………………………………33 Conclusion ………………………………………………………35 References ………………………………………………………36 Chapter 4 Pressure-Composition Isotherms and Reversible Hydrogen-Induced Phase Transformations in Ti-6Al-4V …46 Abstract …………………………………………………………46 Introduction ……………………………………………………46 Experimental ……………………………………………………47 Results …………………………………………………………48 1. P-C isotherm …………………………………………………50 2. Phase transformation upon hydrogenation and dehydrogenation ………………………………………………51 3. Partial phase diagrams …………………………………52 4. Thermodynamic properties of phase transformation …54 Discussion ………………………………………………………54 1. Effect of Al and V on hydrogenation of Ti64 ………54 2. Hydrogen-induced migration of elements in Ti64 ……56 Conclusion ………………………………………………………57 References ………………………………………………………58 Chapter 5 Refined Nonostructures of Ti-6Al-4V by Repeated Isothermal Hydrogenation ……………………………………69 Abstract …………………………………………………………69 Introduction ……………………………………………………70 Experimental ……………………………………………………71 Results and discussion ………………………………………72 1. Kinetics of hydrogen absorption and desorption ……72 2. Phase characterization ……………………………………73 3. Morphologies of the structures …………………………75 4. Microhardness test ………………………………………77 Conclusion ………………………………………………………78 References ………………………………………………………79 Appendix 1 Portable Metal Hydride Cartridge Developed for Proton Exchange Membrane Fuel Cell (PEMFC) ……………87 Appendix 2 Prototype Metal Hydride Refrigerator Driven by Solar Heater ……………………………………………………94

    1.G. Sandrock, J. Alloys Comp., 293-295 (1999) 877-888.
    2.M. V. C. Sastri, in Metal Hydrides, Narosa Publishing House, New Delhi, (1998).
    3.T. B. Flanagan and W. A. Oates, in Hydrogen in Intermetallic Compounds I, edited by L. Schlapbach, Springer-Verlang, Berlin, (1988) p. 50.
    4.S. M. Lee, Ph D. Thesis, National Tsing Hua University, (1996).
    5.H. C. Chu, S. R. Sheen, C. T. Yeh and T. P. Perng, J. Alloys Comp., 322 (2001) 198-204.
    6.J. J. Lin and T. P. Perng, Script. Metall., 25 (1991) 1179-1182.
    7.R. C. Bowman, Jr., C. H. Luo, C. C. Ahn, C. K. Witham, B. Fultz, J. Alloys Comp., 217 (1995) 185-192.
    8.G. Sandrock, S. Suda and L. Schlapbach, in Intermetallic Compounds II, edited by L. Schlapbach, Springer-Verlang, Berlin, (1992) p. 197.
    9.F. H. Froes, O. N. Senkov and J. I. Qazi. Int. Mater. Rev., 49 (2004) 227-245.
    10.S. Suda, Y. Komazaki, H. Narasaki, M. Uchida, J. Less-Common Met., 172-174 (1991) 1092-1110.
    11.R. Werner, M. Groll, J. Less-Common Met., 172-174 (1991) 1122-1129.
    12.A. Isselhorst, M. Groll, J. Alloys Comp., 231 (1995) 888-894.
    13.E. Willers, M. Groll, Int. J. Hydrogen Energy, 24 (1999) 269-276.
    14.D. Chandra, S. Bagchi, S. W. Lambert, W. N. Cathey, F. E. Lynch, R. C. Bowman, J. Alloys Comp., 199 (1993) 93-100.
    15.R. L. Cohen, K. W. West, J. H. Wernick, J. Less-Common Met., 73 (1980) 273-279.
    16.G. H. Kim, J. Y. Lee, J. Less-Common Met., 132 (1987) 123-132.
    17.H. Nakamura, Y. Nakamura, S. Fujitani, I. Yonezu, Int. J. Hydrogen Energy, 21 (1996) 457-460.
    18.Y. Josephy, E. Bershadsky, M. Ron, J. Less-Common Met., 172-174 (1991) 997-1008.
    19.Y. Nakamura, K. Sato, S. Fujitani, K. Nishio, K. Oguro, I. Uehara, J. Alloys Comp., 267 (1998) 205-210.
    20.S. E. Hsu. V. M. Beibutian, M. T. Yeh, J. Alloys Comp., 330-332 (2002) 882-885.
    21.S. M. Lee, T. P. Perng, J. Alloys Comp., 177 (1991) 107-118.
    22.Y. Nakamura, K. Oguro, I. Uehara, E. Akiba, Int. J. Hydrogen Energy, 25 (2000) 531-537.
    23.K. N. Semenenko, V. V. Burnasheva, J. Less-Common Met., 105 (1985) 1-11.
    24.S. W. Lambert, D. Chandra, W. N. Cathey, F. E. Lynch, R. C. Bowman, Jr., J. Alloys Comp., 187 (1992) 113-135.
    25.C.-C. Shen, S.-M. Lee, J.-C. Tang, T.-P. Perng, J. Alloys Comp., 356-357 (2003) 800-803.
    26.M. H. Mendelsohn, D M. Gruen, A. E. Dwight, Nature, 269 (1977) 45-47.
    27.P. D. Goodell, J. Less-Common Met., 99 (1984) 1-14.
    28.J.-M. Park, J.-Y. Lee, Mat. Res. Bull., 22 (1987) 455-465.
    29.S. Ono, K. Nomura, E. Akiba, H. Uruno, J. Less-Common Met., 113 (1985) 113-117.
    30.E. Akiba, E. Nomura, S. Ono, J. Less-Common Met., 129 (1987) 159-164.
    31.H. Uchida, Y. Naragaki, Z. Phys. Chem. Neue Folge, 179 (1993) 93-101.
    32.T. Matsumoto, A. Matsushita, J. Less-Common Met., 123 (1986) 135-144
    33.A. Percheron-Guegan, C. Lartigue, J. C. Achard, P. Germi,F, Tasset, J. Less-Common Met., 74 (1980) 1-12.
    34.E. Akiba, H. Hayakawa, Y. Ishido, K. Nomura, S. Shin, T. Minesawa, MRS Int. Meeting on Adv. Mater. 2 (1989) 39-44.
    35.W. R. Kerr, P. R. Smith, M. E. Rosenblum, F. J. Gurney, Y. R. Mahajan and L. R. Bidwell, in Titanium 80: Science and Tecnology, edited by H. Kimura and O. Izumi, TMS-AIME, Warrendale, PA, vol. 4 (1980) pp. 2477-2486.
    36.W. R. Kerr, Metall. Trans. A, 16A (1985) 1077-1087.
    37.M. Ninomi, B. Gong, T. Kobayashi, Y. Ohyabu and O. Toriyama, Metall. Mater. Trans. A, 26A (1995) 1141-1151.
    38.J. Nakahigashi and H. Yoshimura, Mater. Trans., 43 (2002) 2768-2772.
    39.H. Yoshimura, Int. J. Hydrogen Energy, 22 (1997) 145-150.
    40.F. H. Froes, O. N. Senkov and J. I. Qazi, Int. Mater. Rev., 49 (2004) 227-245
    41.T.-Y. Fang and W.-H. Wang, Mater. Chem. Phys., 56 (1998) 35-47.
    42.J.I. Qazi, O. N. Senkov, J. Rahim, A. Genc and F. H. Froes, Metall. Mater. Trans. A, 32A (2001) 2453-2463.
    43.A. A. Ilyn, B. A. Kolachev and A. M. Mamonov, in Titanium 92: Science and Tecnology. edited by F. H. Froes and I. Caplan, TMS-AIME, Warrendale, PA, vol. 1 (1993) pp. 941-947.
    44.M. V. C. Sastri, in Metal Hydrides, Narosa Publishing House, New Delhi, (1998) p. 3.
    45.S. Ishiyama, K. Fukaya, M. Eto and N. Miya, J. Nucl. Sci. Tech., 37 (2000) 144-152.
    46.S. M. Lee and T. P. Perng, J. Alloys Comp., 177 (1991) 107-118.
    47.A.San-Martin and F. D. Manchester, in Phase Diagrams of Binary Titanium Alloys, edited by J. L. Murray, ASM International, Metals Park, Ohio, (1987) pp. 123-135.
    48.D. S. Shih and H. K. Birnbaum, Script. Metall., 20 (1986) 1261-1264.
    49.C.C. Shen, C. Y. Yu, and T. P. Perng, to be published.
    50.R. Griessen and T. Riesterer, in Hydrogen in Intermetallic Compounds I, edited by L. Schlapbach, Springer-Verlag, Berlin, (1988) p.266.
    51.H. H. Van Mal, K. H. J. Buschow and A. R. Miedema, J Less-Common Metals, 35 (1974) 65-76.
    52.G. Lütjering and J. C. Williams, in Titanium, Springer, Berlin, (2003) p. 32.
    53.A. San-Martin and F. D. Manchester, in Phase Diagrams of Binary Titanium Alloys, edited by J. L. Murray, ASM International, Metals Park, Ohio, (1987) pp.123-135.
    54.C. C. Shen and T. P. Perng, submitted to Acta Matell.
    55.I. Grimberg, L. Levin, O. Botstein and F. H. Froes, J. Mater. Res., 6 (1991) 2069-2076.
    56.F. H. Froes, O. N. Senkov and J. I. Qazi, Int. Mater. Rev., 49 (2004) 227-245.
    57.T.Y. Fang and W.H. Wang, Mater. Chem. Phys., 56 (1998) 35-47.
    58.Y. Zhang and S.Q. Zhang, Int. J. Hydrogen Energy, 22 (1997) 161-168.
    59.W. R. Keer, Metall. Trans., 16A (1985) 1077-1087.
    60.M. Ninomi, B. Gong, T. Kobayashi, Y. Ohyabu and O. Toriyama, Metall. Mater. Trans., 26A (1995) 1141-1151.
    61.T. I. Wu and J. K. Wu, Metall. Trans., 24A (1993) 1181-1185.
    62.C. Y. Yu, C. C. Shen and T. P. Perng, Scripta Mater., accepted.
    63.P. S. Rudman, J. J. Reilly and R. H. Wiswall, J. Less-common Met., 58 (1978) 231-240.
    64.R. Boyer, G. Welsch and E. W. Collings, in Materials Properties Handbook: Titanium Alloys, ASM International, Metals Park, Ohio, (1994) pp. 524-1021.
    65.G. Welsch, G. Lutjering, K. Gazioglu and W. Bunk, Metall. Trans., 8A (1977) 169-177.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE