簡易檢索 / 詳目顯示

研究生: 黃炳剛
Huang, Ping-Kang
論文名稱: AlCrNbSiTiV高熵合金及其氮化物濺鍍薄膜之研究
On High-Entropy Alloy and Nitride Coatings Sputtered from AlCrNbSiTiV Target
指導教授: 葉均蔚
Yeh, Jien-Wei
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 161
中文關鍵詞: 高熵氮化物多元氮化物超硬膜熱穩定性高熵合金
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用真空電弧熔煉法製備AlCrNbSiTiV六元等莫耳高熵合金靶材,再利用反應式射頻磁控濺鍍法鍍製高熵合金金屬及氮化物薄膜,並探討不同氮氣比例、不同基板溫度以及不同基板偏壓對薄膜微結構與機械性質的影響。此外,對初鍍態氮化物薄膜,施以不同溫度之真空退火5小時,以探討薄膜之高溫熱穩定性。更在WC+Co基板上先鍍覆不同金屬中間層再鍍覆最佳硬度的高熵氮化物薄膜,以求得最佳附著力。最後以具最佳附著力的AlCrNbSiTiV氮化物薄膜鍍覆於拋棄式三角銑刀上,進行304不鏽鋼及SKD61熱模具鋼的切削測試。
    實驗結果發現AlCrNbSiTiV合金膜為非晶質結構,隨著氮氣流率的增加,氮化物薄膜均為單一NaCl型FCC結構,且硬度隨之增加並在RN=20%達最高值41 GPa;在基板溫度改變下,氮化物薄膜仍呈現單一FCC結構並無析出相產生,僅晶粒尺寸稍微增加,硬度仍保持在40 GPa;在改變基板偏壓下,薄膜仍呈現單一FCC固溶相,薄膜成長的優選方向由0 V時的(111)平面在50 V之後轉變為(200)平面,晶粒尺寸則由0 V時的53 nm細至-150V時的8 nm,綜合此些影響,氮化物薄膜在氮氬比例28.5%、基板偏壓-100 V、基板溫度300 ℃的製程條件下可達41 GPa的超硬硬度與360 GPa的楊氏係數。
    氮化物薄膜具有優越的熱穩定性質,在1000 ℃五小時退火下仍未見分相,顯示高熵效應使單一FCC固溶相為穩定相,此外,晶粒未呈粗化現象因而可使硬度值仍維持約40 GPa的超硬水準,本研究提出新的熱力學分析,證明多元下的晶格扭曲使高角度及低角度晶界都缺乏驅動力造成晶粒粗化。
    在附著力方面,以自身金屬(AlCrNbSiTIV)厚度約100 nm作為中間層時可得到最佳的附著力。磨耗速率則隨薄膜硬度與緻密度的增加而減少,基板偏壓為-150 V時可得最佳磨耗速率為1.74×10-6 mm3/Nm。在切削能力方面,與工業上所使用的TiN與TiAlN硬膜相比,AlCrNbSiTiV氮化物薄膜擁有更優越的切削性質。


    摘要..........................................................................................................Ⅰ 目錄..........................................................................................................Ⅲ 表目錄..................................................................................................... Ⅵ 圖目錄......................................................................................................Ⅶ 第一章 前言..............................................................................................1 第二章 文獻回顧......................................................................................4 2.1反應式射頻磁控濺鍍.......................................................................4 2.1.1濺鍍原理....................................................................................4 2.1.2射頻濺鍍法................................................................................5 2.1.3磁控濺鍍法................................................................................5 2.1.4反應式濺鍍法............................................................................5 2.2薄膜成長機制與結構.......................................................................6 2.2.1薄膜成長機制............................................................................6 2.2.2薄膜結構....................................................................................9 2.2.3薄膜機械性質..........................................................................13 2.3氮化物硬膜之發展與研究.............................................................19 2.3.1本質性氮化物硬膜..................................................................20 2.3.1.1填隙型氮化物...................................................................21 2.3.1.2共價鍵型氮化物...............................................................23 2.3.2薄膜製程參數的影響..............................................................28 2.3.2.1不同氮氣流率對薄膜的影響...........................................28 2.3.2.2不同基板溫度對薄膜的影響...........................................29 2.3.2.2不同基板偏壓對薄膜的影響...........................................30 2.3.3奈米複合結構薄膜的發展......................................................33 2.3.2.1多層結構薄膜...................................................................33 2.3.2.2奈米複合薄膜...................................................................33 2.3.4多元氮化物薄膜的發展..........................................................42 2.3.5氮化物薄膜熱穩定性的發展..................................................46 2.4 高熵合金薄膜之研究...................................................................50 2.4.1高熵合金的簡介......................................................................50 2.4.2高熵氮化物薄膜的發展..........................................................50 2.5 本研究的目的及主題規劃...........................................................53 第三章 實驗步驟....................................................................................55 3.1合金組成........................................................................................55 3.2靶材製備........................................................................................55 3.3薄膜製備........................................................................................56 3.3.1基板選擇.................................................................................56 3.3.2基板前處理.............................................................................56 3.3.3薄膜製備.................................................................................56 3-4薄膜性質分析................................................................................57 3.4.1薄膜成份及結構分析..............................................................57 3.4.2薄膜機械性質..........................................................................59 第四章 結果與討論................................................................................69 4.1不同氮氣流率對薄膜的影響........................................................71 4.1.1濺鍍速率與成份分析..............................................................71 4.1.2 XRD晶體結構分析及薄膜微結構........................................71 4.1.3機械性質..................................................................................73 4.1.3.1殘留應力...........................................................................73 4.1.4.2硬度與楊氏係數...............................................................73 4.2不同基板溫度對薄膜的影響.........................................................81 4.2.1濺鍍速率與成份分析..............................................................81 4.2.2 XRD晶體結構分析及薄膜微結構........................................81 4.2.3機械性質..................................................................................83 4.2.3.1殘留應力...........................................................................83 4.2.3.2硬度與楊氏係數...............................................................84 4.3不同基板偏壓對薄膜的影響.........................................................90 4.3.1濺鍍速率與成份分析..............................................................90 4.3.2 XRD晶體結構分析及薄膜微結構........................................91 4.3.3機械性質..................................................................................93 4.3.3.1殘留應力...........................................................................93 4.3.3.2硬度與楊氏係數...............................................................94 4.4 (AlCrNbSiTiV)N氮化物薄膜的熱穩定性..................................105 4.4.1 XRD晶體結構分析及微結構..............................................105 4.4.2硬度與楊氏係數....................................................................106 4.4.3高解析TEM分析及薄膜熱穩定性質..................................107 4.4.4氧化實驗(大氣退火) ...........................................................125 4.5 (AlCrNbSiTiV)N 氮化物薄膜的附著性、磨耗及切削性質.....129 4.5.1薄膜附著性測試....................................................................129 4.5.2薄膜磨耗速率........................................................................134 4.5.3薄膜切削測試........................................................................138 第五章 結論..........................................................................................143 研究重要發現........................................................................................146 未來研究方向........................................................................................147 第六章 參考文獻..................................................................................148

    [1] S. Veprek, H.D. M□nnling, M. Jilek, P. Holubar, Mater. Sci. Eng. A-Struct. 366 (2004) 202.
    [2] A. H□rling, L. Hultman, M. Od□n, J. Sj□l□n, L. Karlsson, Surf. Coat. Technol. 191 (2005) 384.
    [3] S. Veprek, S. Reiprich, L. Shizi, Appl. Phys. Lett. 66 (1995) 2640.
    [4] A. Flink, T. Larsson, J. Sj□l□n, L. Karlsson, L. Hultman, Surf. Coat. Technol. 200 (2005) 1535.
    [5] H.-D. Mannling, D.S. Patil, K. Moto, M. Jilek, S. Veprek, Surf. Coat. Technol. 146 (2001) 263.
    [6] F. Vaz, L. Rebouta, M. Andritschky, M. F. da Silva, J. C. Soares, Surf. Coat. Technol 98 (1998) 912.
    [7] K. Yamamoto, S. Kujime, K. Takahara, Surf.Coat. Technol. 200 (2005) 1383.
    [8] H. Ezura, K. Ichijo, H. Hasegawa, K. Yamamoto, A. Hotta, T. Suzuki, Vacuum 82 (2008) 476.
    [9] J.L. Endrino, S. Palac□n, M.H. Aguirre, A. Guti□rrez, F. Sch□fers, Acta Mater. 55 (2007) 2129.
    [10] S.K. Kim, P.V. Vinh, J.H. Kim and T. Ngoc, Surf. Coat. Technol. 200 (2005) 1391.
    [11] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsai, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299.
    [12] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Metall. Mater. Trans. A 35 (2004) 1465.
    [13] J.W. Yeh, S. K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Metall. Mater. Trans. A 35 (2004) 2533.
    [14] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Adv. Eng. Mater. 6 (2004) 74.
    [15] C.J Tong, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A 36 (2005) 881.
    [16] C.J. Tong, M.R. Chen, S.K. Chen, J.W Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A 36 (2005) 1263.
    [17] J.W. Yeh, Ann. Chim-Sci. Mat. 31 (2006) 633.
    [18] 張慧紋, “以反應是直流濺鍍法製備Al-Cr-Mo-Si-Ti高熵合金氮化物薄膜及其性質探討” 國立清華大學 材料科學工程系系碩士論文 (2005).
    [19] C.H. Lai, S.J. Lin, J.W. Yeh, S.Y. Chang, Surf. Coat. Technol. 201 (2007) 3275.
    [20] C.H. Lai, M.H. Tsai, S.J. Lin, J.W. Yeh, Surf. Coat. Technol. 201 (2007) 6993.
    [21] C.H. Lai, S.J. Lin, J.W. Yeh, A. Davison, J. Phys. D-Appl. Phys. 39 (2006) 4628.
    [22] C.H. Lai, k.H. Cheng, S.J. Lin, J.W. Yeh, Surf. Coat. Technol. 202 (2008) 3732.
    [23] 鄭耿豪 “利用射頻磁控濺鍍法製備高熵合金氮化物硬質薄膜”, 國立清華大學 材料科學工程系系碩士論文 (2005).
    [24] 賴思維 “以反應式直流濺鍍法製備AlBCrSiTi高熵氮化物薄膜及其性質探討”, 國立清華大學 材料科學工程系系碩士論文 (2006).
    [25] C.H. Lin, J.G. Duh, J.W. Yeh, Surf. Coat. Technol. 201 (2007) 6304.
    [26] P.J. Martin, A. Bendavid, J.M. Cairney, M. Hoffman, Surf. Coat. Technol. 200 (2005) 2228.
    [27] K. Kutschej, P.H. Mayrhofer, M. Kathrein, P. Polcik, C. Mitterer, Surf. Coat. Technol. 200 (2005) 1731.
    [28] P.H. Mayrhofer, P.Eh. Hovsepian, C. Mitterer, W.D. M□nz, Surf. Coat. Technol. 177– 178 (2004) 341.
    [29] R□mpp Chemie Lexikon, Thieme Verlag, Stuttgart, 1995.
    [30] R. L. Boxman, V. N. Zhitomirsky, I. Grimberg, L. Rapoport, S. Goldsmith, B. Z. Weiss, Surf. Coat. Technol. 125 (2000) 257.
    [31] W.R. Grove, phil. Trans. Roy. Soc. London A142 (1852) 87.
    [32] 金元粲, 薄膜的基本技術, 日本東京大學出版會社 3, (1984).
    [33] R.M. Mason, M. Pichiling, J. Phys. D: Appl. Phys. 27 (1994) 2363.
    [34] F.A. Smidt, int. Mater. Rev. 35 (1990) 61.
    [35] M. Ohing, “The Materials Science of Thin Films”, Academic Press, San Diego, 1992.
    [36] B.A. Movchan, A.V. Demchishin, Fiz. Met. Metalloved, 28 (1969) 83.
    [37] J.A. Thornton, J.Vac. Sci. Technol. 11 (1974) 666.
    [38] R. Messier, V.C. Venugopal and P.D. Sunal, J. Vac. Sci. Technol. A 18 (2000) 1538.
    [39] P.B. Barna, M. Adamik, Protective Coatings and Thin Films: Synthesis Characterisation and Applications, Kluwer Academic Publishers, Boston, 1997.
    [40] J. Musil, F. Kunc, H. Zeman, and H. Polakova, Surf. Coat. Technol. 154 (2002) 304.
    [41] W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564.
    [42] J. Musil, F. Kunc, H. Zeman, and H. Polakova, Surf. Coat. Technol. 154 (2002) 304.
    [43] J. Musil, F. Kunc, H. Zeman, and H. Polakova, Surf. Coat. Technol. 154 (2002) 304.
    [44] P. Karv□nkov□, H.-D. M□nnling, C. Eggs, S. Veprek, Surf. Coat. Technol, 146 (2001) 280.
    [45] L. Karlsson, A.H□rling, M.P. Johansson, L. Hultman, G. Ramanath, Acta Materialia 50 (2002) 5103.
    [46] S. Veprek, J. Vac. Sci. Technol. A 17 (1999) 2401.
    [47] J. Musil, and J. Vlcek, Surf. Coat. Technol., 142-144 (2001) 557.
    [48] Hugh O. Pierson, Handbook of refractory carbides and nitrides, Noyes Publications, New Jersey, 1996.
    [49] G. H□gg, Z. Phys. Chern., Abt. B 6 (1929) 221.
    [50] J. Pelleg, L.Z. Zevin, S. Lungo, Thin Solid Films 197 (1991) 117.
    [51] I. Goldfarb, J. pelleg, L. Zevin, N. Croitoru, Thin Solid Films 200 (1991) 117.
    [52] R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1976, p.13.
    [53] W. Ensinger, Surf. Coat. Technol., 65 (1994) 90.
    [54] L. Hultman, J.E. Sundgren, and J.E. Greene, D. B. Bergstrom and I. Petrov, J. Appl. Phys. 78 (1995) 5395.
    [55] M. Kadoshima, K. Akiyama,K. Yamamoto,H. Fujiwara,T. Yasuda,T. Nabatame and A. Toriumi, J. Vac. Sci.Technol. B 23 (2005) 42.
    [56] H. Holleck, J. Vac. Sci. Technol. A 4 (1986) 2661., X. Li, B. Tang, J. Pan, D. Liu and Z. Xu, J. Mater. Sci. Technol. 19 (2003) 291.
    [57] I. Yonenaga, A. Nikolaev, Y. Melnik and V. Dmitriev, Jan. J. Appl. Phys. 40 (2001) L426.
    [58] J.L. He, L.C. Guo, D.G. Yu, R.P. Liu, Y.J. Tian and H.T. Wang, Appl. Phys. Lett. 85 (2004) 5571.
    [59] T. Yamamoto, M. Kawate, H. Hasegawa, T. Suzuki, Surf. Coat. Technol. 193 (2005) 372.
    [60] 賴加瀚“Al-Cr-Ta-Ti-Zr多元氮化物薄膜之製備與性質研究”, 國立清華大學 材料科學工程系系碩士論文 (2008).
    [61] F. Vaz, J. Ferreira, E. Ribeiro, L. Rebouta, S. Lanceros-Mendez, J. A. Mendes, E. Alves, P. Goudeau, J. P. Riviere, F. Ribeiro, I. Moutinho, K. Pischow, J. de Rijk, Surf. Coat. Technol. 191 (2005) 317.
    [62] G. Wei, A. Rar, J. A. Barnard, Thin Solid Films 398 (2001) 460.
    [63] Z. B. Zhao, Z. U. Rek, S. M. Yalisove, J. C. Bilello, Thin Solid Films 472 (2005) 96.
    [64] S. M. Aouadi, M. Debessai, J. Vac. Sci. Technol. A 22 (2004) 1975.
    [65] H.M. Benia, M. Guemmaz, G. Schmerber, A. Mosser, J.C.Parlebas, Appl. Surf. Sci. 200 (2002) 231.
    [66] Wu D, Zhang Z, Fu W, Fan X, Guo H. Appl Phys A 64 (1997) 593.
    [67] T. Yotsuya, M. Yoshitake, T. Kodama, Cryogenics 37 (1997) 817.
    [68] L. Pichon, T. Girardeau, A. Straboni, F. Lignou, J. Perri□re, J.M. Frig□rio, Nucl. Instr. Meth. Phys.Res. B 147 (1999) 378.
    [69] L. Pichon, T. Girardeau, A. Straboni, F. Lignou, Ph. Gu□rin, J. Perri□re, Appl. Surf. Sci. 150 (1999) 115.
    [70] S. Mahieu, P. Ghekiere, G. De Winter, R. De Gryse, D. Depla, G. Van Tendeloo, O. I. Lebedev, Surf. Coat. Technol. 200 (2006) 2764.
    [71] J. E. Sundgren, Thin Solid Films 128 (1985) 21.
    [72] G.L. Huffman, D.E. Fahnline, R. Messier, L.J. Pilione, J. Vac. Sci. Technol. A7 (1989) 2252.
    [73] M. M. Larijani, N. Tabrizi, S. Norouzian, A. Jafari, S. Lahouti, H. H. Hosseini, N. Afshari, Vacuum 81 (2006) 550.
    [74] X. M. He, N. Baker, B. A. Kehler, K. C. Walter, M. Nastasi, Y. Nakamura, J. Vac. Sci. Technol. A 18 (2000) 30.
    [75] Y.H. Cheng, B.K. Tay, S.P. Lau, J. Vac. Sci. Technol. A 20 (2002) 1270.
    [76] I. Petrov, L. Hultman, U. Helmersson, J. E. Sundgren, J. E. Greene, Thin Solid Films 169 (1989) 299.
    [77] L. Combadiere, J. Machet, Surf. Coat. Technol. 88 (1996) 17.
    [78] H.Q. Lou, N. Ax□n, R.E. Somekh, I.M. Hutchingsm Surf. Coat. Technol. 90 (1997) 123.
    [79] O. Knotek, R. Elsing, G. Kramer, F. Jungblut, Surf. Coat. Technol. 46 (1991) 265
    [80] J.C. Knight, T.F. Page, I.M. Hutchings, Surface Engineering 5 (1989) 213.
    [81] J. E. Sundgren, B.E Jacobson, M.K. Hibbs, Z. Metallkd 75 (1984) 755.
    [82] J. E. Sundgren, H. T. G. Hentzell, J. Vac. Sci. Technol. A 4 (1986) 2259.
    [83] J. E. Sundgren, M. K. Hibbs, U. Helmersson, B. E. Jacobson, H. T. G. Hentzell, J. Vac. Sci. Technol. A 1 (1983) 301.
    [84] L. Combadiere, J. Machet, Surf. Coat. Technol. 88 (1996) 28.
    [85] A.J. Perry, M. Jagner, Thin Solid Films 171 (1989) 197.
    [86] D.S. Rickerby, S.J. Bull, j. surf. Coat. Technol. 39 (1989) 315.
    [87] K.H. Muller, J. Vac. Sci. Technol. A 4 (1986) 184.
    [88] U.C. Oh, J. H. Je, J. Appl. Phys. 74 (1993) 1692.
    [89] S. J. Bull, Tribol. Int. 30 (1997) 491.
    [90] F. Vaz, P. Machado, L. Rebouta, P. Cerqueira, P. Goudeau, J. P. Riviere, E. Alves, K. Pischow, J. de Rijk, Surf. Coat. Technol. 174 (2003) 375.
    [91] P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Prog. Mater. Sci. 51 (2006) 1032.
    [92] J.S. Koehler, Phys. Rev., B 2 (1970) 547.
    [93] U. Helmersson, S. Todorova, S.A. Barnett, J.E. sundgren, L.C. Markert, J.E. Greene, J. Appl. Phys. 62 (1987) 481.
    [94] J. Musil, Surf. Coat. Technol. 125 (2000) 322.
    [95] S. Zhang, D. Sun, Y. Fu, and H. Du, Surf. Coat. Technol. 167 (2003) 113.
    [96] H. Wang, A. Sharma, A. Kvit, Q. Wei, J. Mater. Res. 16 (2001) 2733.
    [97] L.U. Chunsheng, Y.W. MAI and Y.G. Shen, J. Mater. Sci. 41 (2006) 937.
    [98] Y.S. Li, S. Shimada, H. Kiyono, A. Hirose, Acta Materialia 54 (2006) 2041.
    [99] S. Veprek, P. Karvankova, M. G. J. Veprek-Heijman, J. Vac. Sci. Technol. B 23 (2005) L17.
    [100] J. Musil, P. Zeman, H. Hruby, and P. H. Mayrhofer, Surf. Coat. Technol. 120-121 (1999) 179

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE