研究生: |
黃慕若 Huang, Mu-Ruo |
---|---|
論文名稱: |
利用濕式環境穿透式電子顯微鏡臨場觀測二氧化鈦負載白金之光催化反應 In-situ Observation of Photocatalytic reaction of TiO2/Pt system in Liquid Environmental TEM |
指導教授: |
陳福榮
Chen, Fu-Rong |
口試委員: |
吳文偉
莊昀儒 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 穿透式電子顯微鏡 、臨場光誘發分析 、微型化濕室環境腔體 、光纖導入光束系統 |
外文關鍵詞: | electron microscope, in situ light-induced analysis, wet cell, fiber-based system |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究論文欲發展臨場光誘發分析技術於電子顯微鏡中,因其顯微術光源為高能電子束,腔體需保持一高真空之環境下,因此造成欲分析樣品受到限制,故此研究中利用本實驗室所發展的微型化濕室環境腔體,將液體樣品封裝於微型環境腔體內,進而能於穿透式電子顯微鏡中觀測液態樣品之反應過程。再搭載光纖導入光束系統裝置於JEM-2010穿透式電子顯微鏡腔體中,進行奈米尺度下臨場光誘發反應之觀測,並使用自行設計之光強度偵測器,分析在特定光強度值下光誘發反應之機制。
本論文研究已成功發展臨場觀測光誘發反應之系統,並且能夠隨時更換不同波長之光源,以便應用於不同的光誘發反應中。此外,在欲觀測之光誘發沉積反應部分,已於光學顯微鏡與電子顯微鏡中,觀察到反應前後影像的變化與差異,並搭配X光微區分析與元素分析圖譜進行定性分析。在光誘發產氣反映部分,除在光學顯微鏡下臨場觀測到反應,也已成功應用所開發之光源系統搭載電子顯微術,得到其臨場反應之影像。
In this study, we design a “fiber-based system” which is using a UV light source with optical fiber to induce UV light through the EDS pole for JEM-2010. Because the TEM chamber must maintain at ultra-high vacuum environment, the sample can only in solid state. In order to observe wet sample in TEM, we use the wet-cell which is designed by our laboratory to prepare samples. Combine the fiber-based system with wet-cell technology let us having the chance to in-situ observes the photo-induced catalysis reaction in EM under nano-scale.
We can confirm that the light-induced reaction is actually occurred under OM and TEM by the in-situ movies, difference in the images and the EDS analysis. The result makes sure that our home-make light induced system for TEM is workable.
第六章 參考文獻
[1] D. F. Parsons et al., “Structure of Wet Specimens in Electron Microscopy”, Science, 186,1974, 407.
[2] R T K Baker and P. S .Harris, “Controlled atmosphere electron microscopy Scientific Instruments”, 8, 1972, 793.
[3] Fujiyoshi et al., “Specimen-holding device for electron microscope”, U.S. Patent 5406087,1995.
[4] Danilatos GD and PL Gai, ed. ,“Environmental Scanning Electron Microscopy. In-Situ Microscopy in Materials Research”, Kluwer Academic Publishers, Dordrecht, 1997, 14–44.
[5] Matthew H. Ervin et al., “A Simple Low-Vacuum Environmental Cell.”, Microscopy and Microanalysis, 9, 2003, 18–28.
[6] P.Wandrol, “Monochromatic non-immersion FEG SEM.”, Microscopy and Microanalysis, 18, 2012, 1282-1283.
[7] N. de Jonge et al.,”Electron microscopy of whole cells in liquid with nanometer resolution”, PNAS, 2009, 2159-2164.
[8] N. de Jonge et al., “Nanometer-resolution electron microscopy through micrometers-thick water layers,”,Ultramicroscopy, 110, 2010, 1114–1119.
[9] K. Kaznacheyev et al.,”Sealed cell for in-water measurements.”, AIP Conference Proceedings, 507, 2000, 395-400.
[10] Andrew J. Leenheer et al., “A Sealed Liquid Cell for In Situ Transmission Electron Microscopy of Controlled Electrochemical Processes.”, JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2014.
[11] Diana B. Peckys et al.,”Nanoscale Imaging of Whole Cells Using a Liquid Enclosure and a Scanning Transmission Electron Microscope.”, PLoS ONE, 4, 2009, e8214.
[12] T. W. Huang et al.,”Self-aligned wet-cell for hydrated microbiology observation in TEM.”, Lab Chip, 12, 2012, 340-7.
[13] Michael D. Grapes et al.,” Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling.”, Review of Scientific Instruments, 85, 2014, 084902.
[14] S. Zhao et al.,”Direct observation of zipper-like wall-to-wall coalescence of double-wall carbon nanotubes.”, CARBON, 71, 2014, 159–165.
[15] J. Y. Huang et al.,”In situ observation of the electrochemical lithiation of a single SnO₂ nanowire electrode.”, SCIENCE, 330, 2010, 1515-20.
[16] Xiao Hua Liu and Jian Yu Huang,”In situ TEM electrochemistry of anode materials in lithium ion batteries.”, Energy & Environmental Science, 4, 2011, 3844-3860.
[17] Bin Xiang et al.,”In Situ TEM Near-Field Optical Probing of Nanoscale Silicon
Crystallization.”, Nano Lett.,12, 2012, 2524−2529.
[18] M. Grätzel,”Photoelectrochemical cells.”, Nature, 414 , 2001, 338-44.
[19] M. A. Green et al., Solar cell efficiency tables (version 44), Wiley Online Library, 22, 2014, 701-710.
[20] M. Gratzel,” Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells.”, Journal of Photochemistry and Photobiology A: Chemistry, 164, 2004, 3-14.
[21] A. Hagfeldt and M. Gratzel,” Light-Induced Redox Reactions in Nanocrystalline Systems.”, Chem. Rev., 95, 1995, 49-68.
[22] K. Kalyanasundaram, M. Gratzel,” Applications of functionalized transition metal
complexes in photonic and optoelectronic devices.”, Coordination Chemistry Reviews, 177, 1998, 347-414.
[23] T. Tachikawa et al.,” Influence of Metal Ions on the Charge Recombination Processes during TiO2 Photocatalytic One-Electron Oxidation Reactions.”, J. Phys. Chem. B, 108, 2004, 11054-11061.
[24] Brian O'Regan and Michael Grätzel,” A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.”, Nature, 353, 1991, 737–740.
[25] Michael Grätzel,” Photoelectrochemical cells.”, Nature, 414, 2001, 338-344.
[26] A. Kudo, H. Kato and I. Tsuji, “Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting.” Chemistry Letters,33, 2004, 1534-1539.
[27] Akihiko Kudo,” Photocatalyst materials for water splitting.”, Catalysis Surveys from Asia, 7 , 2003, 31-38.
[28] Shigeru Kohtani, Eito Yoshioka and Hideto Miyabe, Photocatalytic Hydrogenation on Semiconductor Particles, Chap 12, InTech, 2012.
[29] Y.Z. Yang, C.-H. Chang and H. Idriss,” Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M = Pd, Pt or Rh).” Applied Catalysis B: Environmental, 67, 2006, 217–222.
[30] Ali Akbar Ashkarran et al.,” Double-doped TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light.”, Applied Surface Science, 301, 2014, 338-345.
[31] A. Fujishima and K. Honda,” Electrochemical photolysis of water at a semiconductor electrode.”, Nature, 238, 1972, 37-8.
[32] Hyung-Joo Choi and M. Kang,” Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2.”, I. J. of Hydrogen Energy, 32, 2007, 3841 – 3848.
[33] Tao Chen et al. , “Mechanistic Studies of Photocatalytic Reaction of Methanol for Hydrogen Production on Pt/TiO2 by in situ Fourier Transform IR and Time-Resolved IR Spectroscopy”, J. Phys. Chem. C,111,2007,8005-8014.
[34] Jun Xing et al. , “The size and valence state effect of Pt on photocatalytic H2 evolution over platinized TiO2 photocatalyst.”, International journal of hydrogen energy ,39,2014, 1237-1242.
[35] B.T, N. J, Rekas M, Sorrell CC.,” Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects.”, Int. J. Hydrogen Energy, 27,2002, 991–1022.
[36] N. Alenzi,Wei-Ssu Liap,Paul S. Cremer, Int. J. Hydrogen Energy 35 (2010)11768-11775