研究生: |
林瑞庭 Lin, Jui-Ting |
---|---|
論文名稱: |
一個應用於生醫訊號系統之0.5V 1.76Vpp 0.3~0.5𝝁W 自適應採樣率和功耗之事件驅動差分Level Crossing連續漸近式類比至數位轉換器 A 0.5V, 1.76Vpp, 0.3~0.5𝝁W, adaptive sampling rate and power consumption Event-driven Differential Level Crossing Successive Approximation register ADC for Bio-Medical Signal Acquisition Systems |
指導教授: |
鄭桂忠
Tang, Kea-Tiong |
口試委員: |
洪浩喬
Hong, Hao-Chiao 謝志成 Hsieh, Chih-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 類比至數位轉換器 、連續漸近式 、閉迴路EEG偵測 、植入式 、低功耗 、自適應取樣率 |
外文關鍵詞: | Analog-to-Digital Converter (ADC), Successive Approximation Register (SAR), closed loop EEG detection, implant, low power, adaptive sampling rate |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著科技發展以及對於神經相關疾病的日趨重視生理訊號以及腦波訊號的監測系統的需求也越來越高,從行動裝置上獲得監測資訊或是直接製成一個閉迴路的系統來抑制及治療各種神經疾病(如:癲癇、帕金森氏症等等),將整個系統整合成一個系統晶片也越發受到重視。
本論文為了配合植入式的整合型偵測腦波(EEG)閉迴路控制晶片,提出了一個新的建立在Level-crossing(LC)及SAR(Successive-approximation)基礎下的新的LC-SAR ADC架構。該架構基於CMOS 180nm製程並工作於單一一個0.9V電源供應下的同時可以接收當共模電壓(VCM)為0.9時3.06Vpp輸入訊號範圍。此架構使用差動輸入來消除偶次項諧波失真並同時結合SAR作為其量化器來提高SNDR和降低原本所需的超取樣率(Oversampling Ratio, OSR)及SAR架構原本所需的電容大小;運用delta sampling的方式並配合LC的概念使用在比較器前端加入判斷切換輸入端的方法來省下原本LC ADC需要至少兩個比較器的缺點,同時,在此架構的比較器中加入金氧半電容(金屬氧化物半導體電容 或Metal-Oxide-Semiconductor Capacitor 或MOSC)的陣列來同時控制及調整LC的域值電壓(Threshold Voltage)和比較器本身的偏移電壓(Offset Voltage)取代原本需要額外輸入來控制的閾值電壓。
在訊號頻寬4KHz及超取樣率OSR為16的情況之下,根據不同頻率的輸入訊號可自適應調整輸出取樣頻率、功耗及SNDR。在輸入訊號從接近4Hz到4KHz頻寬之間,輸出取樣頻率為1.98KHz~124KHz;經過測量功耗為580nW~763nW;SNDR為49.38dB~60.23dB,相當於有效位元數(ENOB)7.9~9.7位元;效能指標(FOM)大約落在109~303 fJ/conv,整個晶片(含PAD)面積為0.77mm2、核心電路面積則為0.1476mm2。
In recent years, with the development of technology and the increasing emphasis on neurological diseases, the demand for monitoring systems for physiological signals and brainwave signals has been increasing, and it has become more and more important to integrate the whole system into a system chip to obtain monitoring information from mobile devices or to make a closed-loop system to suppress and treat various neurological diseases (e.g., epilepsy, Parkinson's disease, etc.).
In this paper, a new LC-SAR ADC architecture based on Level-crossing (LC) and SAR is proposed for the implantable integrated EEG closed-loop control chip. The architecture is based on CMOS 180nm process and operates on a single 0.9V supply while receiving a 3.06Vpp input signal range when the common mode voltage (VCM) is 0.9.
This architecture uses differential input to eliminate even-order harmonic distortion and combines SAR as its quantizer to improve SNDR and reduce the required oversampling ratio (OSR) and capacitor size of the original SAR structure. Delta sampling is used in combination with the LC concept, and a method of judging and switching the input end is added to the front end of the comparator to eliminate the disadvantage of at least two comparators required in the original LC ADC. Additionally, a MOS capacitor (Metal-Oxide-Semiconductor Capacitor or MOSC) array is added to the comparator in this architecture to simultaneously control and adjust the threshold voltage of LC and the offset voltage of the comparator, replacing the need for additional input to control the threshold voltage.
With a signal bandwidth of 4KHz and an oversampling rate of 16, the output sampling frequency, power consumption, and SNDR can automatically be adapted to different frequencies of the input signal. The power consumption is 264nW~420nW, SNDR is 49.38dB~60.23dB, which is equivalent to the effective number of bits (ENOB) of 7.9~9.7bits, performance index (FOM) is about 109~303 fJ/conv, the area of the whole chip (including PAD) is 0.77mm2, and the core area is 0.1476mm2.
[1] Fleming JE, Dunn E, Lowery MM. Simulation of closed-loop deep brain stimulation control schemes for suppression of pathological beta oscillations in Parkinson’s disease. Front Neurosci, 14 (2020), p. 166
[2] J. Yoo, L. Yan, D. El-Damak, M. A. B. Altaf, A. H. Shoeb and A. P. Chandrakasan, "An 8-Channel Scalable EEG Acquisition SoC With Patient-Specific Seizure Classification and Recording Processor," in IEEE Journal of Solid-State Circuits, vol. 48, no. 1, pp. 214-228, Jan. 2013, doi: 10.1109/JSSC.2012.2221220.
[3] M. T. Salam, M. Sawan and D. K. Nguyen, "A Novel Low-Power-Implantable Epileptic Seizure-Onset Detector," in IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no. 6, pp. 568-578, Dec. 2011, doi: 10.1109/TBCAS.2011.2157153.
[4] W. -M. Chen et al., "A Fully Integrated 8-Channel Closed-Loop Neural-Prosthetic CMOS SoC for Real-Time Epileptic Seizure Control," in IEEE Journal of Solid-State Circuits, vol. 49, no. 1, pp. 232-247, Jan. 2014, doi: 10.1109/JSSC.2013.2284346.
[5] C. -Y. Wu, C. -H. Cheng and Z. -X. Chen, "A 16-Channel CMOS Chopper-Stabilized Analog Front-End ECoG Acquisition Circuit for a Closed-Loop Epileptic Seizure Control System," in IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 3, pp. 543-553, June 2018, doi: 10.1109/TBCAS.2018.2808415.
[6] K. Abdelhalim, H. M. Jafari, L. Kokarovtseva, J. L. P. Velazquez and R. Genov, "64-channel UWB wireless neural vector analyzer SoC with a closed-loop phase synchrony-triggered neurostimulator", IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2494-2510, Oct. 2013.
[7] R. F. Yazicioglu, P. Merken, R. Puers and C. Van Hoof, " A 60 μ W 60 nV/√Hz readout front-end for portable biopotential acquisition systems ", IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1100-1110, May 2007.
[8] Ruiz-Amaya J., Rodriguez-Perez A., Delgado-Restituto M. A Low Noise Amplifier for Neural Spike Recording Interfaces. Sensors. 2015;15:25313–25335.
[9] K. A. Ng and P. K. Chan, "A CMOS analog front-end IC for portable EEG/ECG monitoring applications", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 11, pp. 2335-2347, Nov. 2005.
[10] Y. H. Yang and R. Sarpeshkar, "A bio-inspired ultra-energy-efficient analog-to-digital converter for biomedical applications", IEEE Trans. Circuits Syst., vol. 53, no. 11, pp. 2349-2356, Nov. 2006.
[11] L. J. Ong et al., "Live demonstration: Programmable biphasic multi-channel constant current muscle stimulator with wireless power and data transfer," 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), Turin, Italy, 2017, pp. 1-1, doi: 10.1109/BIOCAS.2017.8325095.
[12] S.-F. Liang, Y.-C. Liao, F.-Z. Shaw, D. W. Chang, C. P. Young and H. Chiueh, "Closed-loop seizure control on epileptic rat models", J. Neural Eng., vol. 8, no. 4, pp. 045001, 2011.
[13] W.-M. Chen et al., "A fully integrated 8-channel closed-loop neural-prosthetic CMOS SoC for real-time epileptic seizure control", IEEE Journal of Solid-State Circuits, vol. 49, no. 1, pp. 232-247, 2013.
[14] M. Monge et al., "A fully intraocular high-density self-calibrating epiretinal prosthesis", IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 6, pp. 747-760, 2013.
[15] I. Williams and T. G. Constandinou, "An energy-efficient dynamic voltage scaling neural stimulator for a proprioceptive prosthesis", IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 2, pp. 129-139, 2013.
[16] W. Biederman et al., “A 4.78 mm2 fully-integrated neuromodulation SoC combining 64 acquisition channels with digital compression and simultaneous dual stimulation,” IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 1038–1047, Apr. 2015.
[17] S. K. Lee, S. J. Park, H. J. Park and J. Y. Sim, "A 21 fJ/Conversion-Step 100 kS/s 10-bit ADC With a Low-Noise Time-Domain Comparator for Low-Power Sensor Interface," in IEEE Journal of Solid-State Circuits, vol. 46, no. 3, pp. 651-659, March 2011.
[18] J. Jin, Y. Gao and E. Sánchez-Sinencio, "An Energy-Efficient Time-Domain Asynchronous 2 b/Step SAR ADC With a Hybrid R-2R/C-3C DAC Structure," in IEEE Journal of Solid-State Circuits, vol. 49, no. 6, pp. 1383-1396, June 2014.
[19] Chang-Yuan Liou, and Chih-Cheng Hsieh, “A 2.4-to-5.2fJ/Conversion-step 10b 0.5-to-4MS/s SAR ADC with Charge Average Switching DAC in 90nm CMOS,” 2013 IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2013
[20] L. Chen, A. Sanyal, J. Ma and N. Sun, "A 24-µW 11-bit 1-MS/s SAR ADC with a bidirectional single-side switching technique," ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC), Venice Lido, Italy, 2014, pp. 219-222, doi: 10.1109/ESSCIRC.2014.6942061.
[21] P. Harpe, H. Gao, R. van Dommele, E. Cantatore, and A. H. M. van Roermund, “A 0.20 mm2 3 nW signal acquisition IC for miniature sensor nodes in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 1, pp. 240–248, Jan. 2016.
[22] P. Y. Chou, N. C. Chen, M. P. H. Lin and H. Graeb, "Matched-Routing Common-Centroid 3-D MOM Capacitors for Low-Power Data Converters," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 8, pp. 2234-2247, Aug. 2017.
[23] Y. S. Hu, K. Y. Lin and H. S. Chen, "A 510nW 12-bit 200kS/s SAR-assisted SAR ADC using a re-switching technique," 2017 Symposium on VLSI Circuits, Kyoto, 2017, pp. C238-C239
[24] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010.
[25] Xie, Liangbo et al. “Energy-efficient hybrid capacitor switching scheme for SAR ADC.” Electronics Letters 50 (2014): 22-23.
[26] Wang, H., et al. (2016). Tri-level capacitor-splitting switching scheme with high energy-efficiency for SAR ADCs. IEICE Electronics Express,13(20), 20160645–20160645.
[27] G. Y. Huang, S. J. Chang, C. C. Liu and Y. Z. Lin, "A 1-µW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications," in IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2783-2795, Nov. 2012.
[28] Y. Hou et al., "A 61-nW Level-Crossing ADC With Adaptive Sampling for Biomedical Applications," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 1, pp. 56-60, Jan. 2019, doi: 10.1109/TCSII.2018.2841037.
[29] C. Weltin-Wu and Y. Tsividis, "An event-driven clockless level-crossing ADC with signal-dependent adaptive resolution", IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2180-2190, Sep. 2013.
[30] H. Wang, F. Schembari, M. Miśkowicz and R. B. Staszewski, "An Adaptive-Resolution Quasi-Level-Crossing-Sampling ADC Based on Residue Quantization in 28-nm CMOS," in IEEE Solid-State Circuits Letters, vol. 1, no. 8, pp. 178-181, Aug. 2018, doi: 10.1109/LSSC.2019.2899723.
[31] T. Marisa et al., "Pseudo Asynchronous Level Crossing adc for ecg Signal Acquisition", IEEE Trans Biomed Circuits Syst, vol. 11, no. 2, pp. 267-278, 2017.
[32] N. Sayiner, H. V. Sorensen and T. R. Viswanathan, "A level-crossing sampling scheme for A/D conversion," in IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 43, no. 4, pp. 335-339, April 1996, doi: 10.1109/82.488288.
[33] S. Hsieh and C. Hsieh, "A 0.44fJ/conversion-step 11b 600KS/s SAR ADC with semi-resting DAC", 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), pp. 1-2, 2016.
[34] Y. Hou, K. Yousef, M. Atef, G. Wang, and Y. Lian, “A 1-to-1-kHz, 4.2-to-544-nW, multi-level comparator based level-crossing ADC for IoT applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 10, pp. 1390–1394, Oct. 2018.
[35] Y. Hou et al., “A 61-nW level-crossing ADC with adaptive sampling for biomedical applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 1, pp. 56–60, Jan. 2019.
[36] H. Wang, V. Nguyen, F. Schembari, and R. B. Staszewski, “An adaptive resolution quasi-level-crossing delta modulator with VCO-based residue quantizer,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 12, pp. 2828–2832, Dec. 2020.
[37] C. Weltin-Wu and Y. Tsividis, “An event-driven clockless level-crossing ADC with signal-dependent adaptive resolution,” IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2180–2190, Sep. 2013.
[38] T. Marisa et al., “Pseudo asynchronous level crossing adc for ecg signal acquisition,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 2, pp. 267–278, Apr. 2017.
[39] B. Yazdani and S. J. Ashtiani, “A low power fully differential levelcrossing adc with low power charge redistribution input for biomedical applications,” IEEE Trans. Circuits Syst., II, Exp. Briefs, vol. 69, no. 3, pp. 864–868, 2021.
[40] D. Dobberpuhl, "The design of a high performance low power microprocessor," Proceedings of 1996 International Symposium on Low Power Electronics and Design, Monterey, CA, USA, 1996, pp. 11-16, doi: 10.1109/LPE.1996.542723.