研究生: |
常皓然 Chang, Hao-Jan |
---|---|
論文名稱: |
Fabrication and Characterization of a-Si/poly-Si thin film Solar cell by Chemical Vapor Deposition (CVD) 探討以化學氣相沉積系統製備非晶矽/多晶矽薄膜式太陽能電池之特性 |
指導教授: |
黃惠良
Hwang, Huey-Liang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 非晶矽/多晶矽薄膜式太陽能電池 |
外文關鍵詞: | a-Si/poly-Si thin film Solar cell |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中,使用高密度電將氣象沉積系統沉積N-type多晶矽薄膜。並藉由霍爾量測、四點探針量測、 X射線繞射光譜儀、及光學顯微鏡做薄膜特性之量測分析。
接著,將N-type多晶矽薄膜沉積於由中興大學先進光電實驗室所制備的ITO/非晶矽試片上,以製備非晶矽/多晶矽異質接面薄膜式太陽能電池。發現非晶矽/多晶矽異質接面之結構可得到高於一般多晶矽同質接面薄膜太陽能電池之開路電壓(Voc),然而由於低品質多晶矽薄膜所影響,使得在短路電流(Jsc)及填充因子(FF)方面皆較一般值低。更藉由製備不同結構之非晶矽/多晶矽異質接面薄膜式太陽能電池的實驗結果及模擬結果之比較,發現不同於一般情況,P-I-N 結構之電池反而比P-I-N-N結構具有較好的I-V特性。
Abstract
In this thesis, the N-doped silicon films were deposited by High Density Plasma Chemical Vapor Deposition (HDPCVD) system. Then we used hall measurement, four point probe, XRD, and microscope to do film characteristic analysis.
And then deposit N-doped poly-Si film on the ITO-glass/a-Si sample prepared by Advanced Optoelectronic Lab of NCHU to fabricate a-Si/poly-Si thin film solar cell. Found that poly-Si layers combined with a-Si layers would enhance open circuit voltage (Voc) , but for low quality of poly-Si film, the short circuit current( Jsc) and fill factor (FF) are quit low than normal. And by comparison experiment and simulation results of different structure of a-Si/poly-Si thin film solar cells, we found for case P-I-N shown the better performance than P-I-N-N case.
[1] http://www.energycrisis.com/.
[2] Ye-Wun Zeng, “High performance grating solar cell with low resistivity wafer and passivation using HNO3”, National Tsing Hua University Master Thesis (2008).
[3] http://www.solarserver.de/wissen/photovoltaik-e.html.
[4] http://www.speedace.info/solar_cells.htm.
[5] Ayra Jagadhamma Letha, “INVESTIGATIONS ON HIGH EFFICIENCY THIN FILM SILICON SOLAR CELLS”, National Tsing Hua University Doctor Thesis (2008).
[6] K.C. Wang and H. L. Hwang, J. Appl. Phys. 77,(12) (1995).
[7] Ruud E.I. Schropp, Miro Zeman, “Amorphous and microcrystalline silicon solar cell”, Kluwer Academic Publishers.
[8] R. E. I. Schropp and M. Zeman, “Amorphous and microcrystalline silicon solar cells,” in Modeling, Materials, and Device Technology. Boston, MA: Kluwer Academic, 1998.
[9] J. K. Rath and R. E. I. Schropp, “Incorporation of p-type microcrystalline silicon films in amorphous silicon based solar cells in a superstrate structure,” Sol. Energy Materials and Sol. Cells, vol. 53, pp. 189–203, 1998.
[10] Kato T. IEEE Trans ED 35 (1988) 23.
[11] Inversion RB, Rief R. J Appl Phys 62 (1987) 1675.
[12] http://www.enigmaticconsulting.com/semiconductor_processing/CVD_
Fundamentals/plasmas/plasmaTOC.html
[13] Lieberman MA, Lichtenberg AJ, Principle of Plasma Discharge and Materials Processing, 2nd Edition, Wiley-Interscience Publishers, New York (2005).
[14] Keller JH, Forster JC, Barnes MS. J Vac Sci Technol A 11 (1993) 2487.
[15] Cunge G, Crowley B, Vender D, Turner MM. Plasma Sources Sci Technol 8 (1999) 576.
[16] http://mitghmr.spd.louisville.edu/lutz/resources/sops/sop45.html
[17]http://uweb.txstate.edu/~wg06/manuals/SpreadingResistance/Spreadingresistance3.doc
[18] http://pvcdrom.pveducation.org/CELLOPER/spectral.htm
[19] Feng -Ming Chan, “Study on Effects of Process Parameters to Crystallinity and Doping Characteristics of Silicon Thin Film Deposited by High Density Plasma Chemical Vapor Deposition (HDPCVD)”, National Tsing Hua University Master Thesis (2009).