簡易檢索 / 詳目顯示

研究生: 趙家齊
論文名稱: 多參數非線性邊界值問題解路徑之探討
Numerical Investigation of Solution Paths for Nonlinear Boundary-Valued Problems with Multiple Parameters
指導教授: 簡國清 博士
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2004
畢業學年度: 93
語文別: 中文
論文頁數: 89
中文關鍵詞: 分歧點隱函數定理牛頓迭代法打靶法局部延拓法虛擬弧長延拓法
外文關鍵詞: Bifurcation point, Implicit theorem, Newton iterative method, Shooting method, Local continuation method, Pseudo - arclength method
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,我們以分歧理論的基礎—隱函數定理為基本工具,利用打靶法、割線預測法、牛頓迭代法和擬弧長延拓法等數值方法,對多參數非線性邊界值問題之解路徑做數值探討。探討在不同的參數變化下,對應的多重解路徑,並進行解析。


    We use the implicit function theorem, shooting method, secant predictor method, Newton iterative method & pseudo-arclength continuation method to numerically investigate the solution path of a nonlinear boundary-valued problem with multiple parameters.We find a lot of multiple solutions occur under different parameters.

    目 錄 第一章 緒論 1 第二章 分歧理論與虛擬弧長延拓法 4 2.1 分歧問題 …………………………………………………4 2.2 隱函數定理與分歧理論 …………………………………6 2.3 局部延拓法 ………………………………………………7 2.4 虛擬弧長延拓法 …………………………………………10 第三章 非線性邊界值問題的數值解法 12 3.1 解路徑的數值解法……………………………………… 12 3.2 牛頓迭代法……………………………………………… 18 3.3 局部延拓法……………………………………………… 20 3.4 虛擬弧長延拓法之數值計算 ………………………… 21 第四章 數值實驗---解路徑之探討 24 4.1 非線性方程解路徑之延拓…………………………………24 4.1.1 自然局部延拓演算法……………………………………24 4.1.2 虛擬弧長延拓演算法……………………………………25 4.2 實驗結果……………………………………………………27 實驗一:令s=4.6探討各種α值的解路徑:……………………27 實驗二:令s=4.4探討各種α值的解路徑:……………………39 實驗三:令s=4.2探討各種α值的解路徑:……………………49 實驗四:令s=4 探討各種α值的解路徑:……………………60 實驗五:令s=3.8探討各種α值的解路徑:……………………67 實驗六:令s=3.6探討各種α值的解路徑:……………………76 第五章 結論 84 參考文獻 86

    [1] Allgower E. L. and Chien C. S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Compute , 7, 1265-1281,1986.
    [2] Atkinson, K. E., The numerical solution of bifurcation problems, SIAM J. Numer, Anal., 14(4), 584-599,1977.
    [3] Aselone, P. M. and Moore, R. H., An Extension of the Newton-Kantorovich Method for Sloving Nonlinear Equations with An Application to Elasticity. J. Math. Anal. l3, pp.476-501,1966
    [4] Bauer, L. , Reiss, E. L., and Keller, H. B., Axisymmetric Bucking of Hollow Spheres and hemispheres, Comm. Pure Appl. Math., 23, pp. 529-568,1970.
    [5] Brown, K. J., Ibrahim, M, M. A. and Shivaji, R., S-Shaped bifurcation curves, Nonlinear Analysis, T. M. A, 5,475-486,1981.
    [6] Brezzi, F. ,Rappaz, J. and Raviart, P.A., Finite dimensional approximation of a bifurcation problems, Numer. Math., 36,1-25,1980.
    [7] Choi, Y. S., Jen, K, C.(簡國清) and McKenna, P. J., The Structure of the Solution Set for Periodic Oscillations in a Suspension Bridge Model, IMA J. Appl. Math., 47, pp.283-306,1991.
    [8] Coron, J. M., Periodic Solutions of a Nonlinear Wave Equation without Asumptions of Monotonicity. Math. Ann., 262, pp.273-285,1983.
    [9] Crandall, M. G. and Rabinowitz, P. H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8,321-340,1971.
    [10] Crandall, M. G. and Rabinowitz, P. H., Bifurcation, Perturbation of Simple Eihenvalues, and Linearized Stability, Archive for rational Mech. Analysis, 52, 161-180,1973.
    [11] Crandall, M. G. and Rabinowliz, P. H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, 1979.
    [12] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press,New York, 1-35, 1977.
    [13] Castro, A and Shivaji, R., Uniqueness of positive solution for a class of elliptic boundary value problems, Proc. R. Soc. Edinb.98A, 267-269, 1984.
    [14] Iooss, G and Joseph, D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg, 1989.
    [15] Jepson A. D. and Spence A., Numerical Methods for Bifurcation Problems, State of the Art in NUmeriacI Analysis, edit bu A, lserles, MJD Powell, 1987.
    [16] J. Glover, A. C. Lazer, and P. J. McKenna, Existence and Stability of Large Scale Nonlinear Oscillations in Suspension Bridges, Journal of Applied Mathematics and Physics Vol. 40,1989.
    [17] Jen, K. C.(簡國清), The Stability and Convergence of a Crank- Nicolson Scheme for a Nonlinear Beam Vibration Equation, Chinese Journal of Mathematics, Vol.23, No.2, pp.97-121,1995.
    [18] Kawada, T. and Hirai, A., Additional Mass Method-A New Approach to Suspension Bridge Rehabitation. Official Proceedings, 2nd Annual International Bridge Conference. Engineers of Society of Western Pennsylvania.1985.
    [19] Keller, H. B., in " Recent Advances in Numerical Analysis ", Ed. by C. de Boor and G. H. Golub, Academic Press, New York, p 73,1978.
    [20] Keller, H. B. and Langford, W. F., Iterations, perturbations and multiplicities for non-linear bifurcation problems, Arch. Rational Mech. Anal., 48, 83-108,1972.
    [21] Keller, H. B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press, pp. 359-384, 1977.
    [22] Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, 1987.
    [23] Kupper, T., Mittelmann, H. D. and Weber, H. (eds.), Numerical Methods for Bifurcation Problems, Birkhauser, Basel. 1984.
    [24] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York. 1983.
    [25] Lazer, A. C., and McKenna, P. J. Large Scale Oscillatory Behaviour in loaded asymmetric systems. Ann. Inst. Henri Poincaré: Analyse non lin’eaire 4(3), pp.243-274,1987.
    [26] Lazer, A. C. and McKenna, P. J., A Symmetry Theorem and Applications to Nonlinear Partial Differential Equations. J. Diff. Eq. 72, pp. 95-106,1988.
    [27] Lazer, A. C. and McKenna, P. J., Large Amplitude Periodic Oscillations in Suspension Bridge: Some New Connections with Nonlinear Analysis. SIAM Rev. 32, pp.537-578,1989.
    [28] Lions, P. L., On the existence of positive solutions of semilinear elliptic equation, SIAM Rev., 24,441-467, 1983.
    [29] Matsuaki, M., Experimental Study on Vortex Excited Oscillation of Suspension Bridge Towers. Trans. Jap. Soc. Civil Eng. l5, pp.172-174, 1985.
    [30] McKenna, P. J. and Walter W., Nonlinear Oscillations in a Suspension Bridge. Archive for Rational Mechanics and Analysis. 98(2), pp. 167-177,1987.
    [31] McKenna, P. J. and Walter, W., On the Mulitiplicity of the Solution Set of Some Nonlinear Boundary Value Problems, Nonlinear Analysis 8, pp.893-907,1984.
    [32] Patil, S. P., Response of Infinite Railroad Track to Vibrating Mass. J. Eng. Mech.114, pp.688-703,1988.
    [33] Q-Heung Choi and Tacksun Jung, Periodic Solution of the Lazer- McKenna Suspension Bridge Equation, to be submitted,1989.
    [34] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp. 221 - 237, 1980.
    [35] Rheinboldt, W. C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley (New York),
    [36] Scanlan, R. H., Airfoil and Bridge Deck Flutter Derivatives. Proc. Am. Soc. Civil Eng. Eng. Mech. Div. Em6, pp.1717-1737, l971.
    [37] Scanlan, R. H., Developments in Low-speed Aeroelasticity in the Civil Engineering Field AIAA Journal 20, pp.839-844, 1982.
    [38] Shivaji, R., Remarks on an S-shaped bifurcation curve, J. Math. Analysis Applic., III, 374-387, 1985.
    [39] Shivaji, R., Uniqueness result for a class of postione problems, Nonlinear Analysis: theory, methods and application, 7, 223-230, 1983.
    [40] Wacker, H. (ed-), Continuation Methods, Academic Press, New York, 1978.
    [41] Wang, S-KL, On S-Shaped Bifurcation curves, Nonlinear Analysis: theory, methods and application, 22, 1475-1485, 1994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE