簡易檢索 / 詳目顯示

研究生: 簡薇庭
Chien, Wei-Ting
論文名稱: 階段型合成醣核苷與其應用於合成聚 N-乙醯乳糖胺
Sequencial Enzymatic Synthesis of Sugar Nucleotides and Its Application on Poly-LacNAc Synthesis
指導教授: 林俊成
Lin, Chun-Cheng
口試委員: 林俊宏
Lin, Chun-Hung
李耀坤
Li, Yaw-Kuen
洪嘉呈
Horng, Jia-Cherng
林伯樵
Lin, Po-Chiao
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 243
中文關鍵詞: 醣核苷聚N-乙醯乳糖胺唾液酸
外文關鍵詞: Sugar Nucleotides, Poly-LacNAc, Sialic acid
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    醣類與醣基化衍生物在生物體中調節許多生理反應,扮演著許多重要的角色,如細胞間辨識、訊息傳遞與病毒入侵等。儘管文獻中已有許多醣體合成的研究陸續被開發發表,但由於醣體本身結構之多樣性,使得其在複雜寡醣體多醣體的合成上,仍具有相當挑戰。由於酵素反應具有高度選擇性與位向專一性,因此提供另一個有效的合成策略。其中,醣基轉移酶已廣泛的被應用在多醣體的合成,可精確地控制醣體合成的鍵結與位向;而研究中顯示,取自於細菌體的醣基轉移酶,其對受質的容忍度較高,在合成醣體衍生物上,更具有合成應用價值。
    在本論文中,建構表達重組蛋白磷酸葡萄糖胸苷轉移酶、β-1,4-半乳糖轉移酶、N-乙醯基己胺糖激酶與 β-1,3-N-乙醯葡萄糖胺轉移酶等酵素,並對這些酵素進行定性分析與反應條件優化篩選。利用表達之磷酸葡萄糖胸苷轉移酶,在55 oC中,以二價金屬鎂離子作為輔助因子,可在二小時內製備多種高單價之醣核苷:尿苷二磷酸半乳糖、尿苷二磷酸 N-乙醯基葡萄糖、尿苷二磷酸葡萄糖與胸苷二磷酸葡萄糖。將表達之磷酸葡萄糖胸苷轉移酶以天然化學黏合法,位向專一的固化於磁性奈米粒子上,重複回收利用,經十次循環反應後,固化之磷酸葡萄糖胸苷轉移酶仍保有 95% 活性。結合半乳糖機酶與N-乙醯基己胺糖激酶進行一鍋化反應,可從相對較低價之起始物合成尿苷二磷酸半乳糖與尿苷二磷酸N-乙醯基葡萄糖,經過離子交換樹脂與凝膠層析的方式得到高純度的醣核苷酸予體。
    論文中,磷酸葡萄糖胸苷轉移酶催化生成之尿苷二磷酸半乳糖、尿苷二磷酸N-乙醯基葡萄糖醣予體經結合β-1,4-半乳糖轉移酶與 β-1,3-N-乙醯葡萄糖胺轉移酶,可進行階段性一鍋化合成聚N-乙醯乳糖胺寡糖體,省去醣予體純化步驟。一般自然界中取得之聚N-乙醯乳糖胺寡糖體為混合物,經由本系統可合成固定已知鏈長之聚N-乙醯乳糖胺寡糖體單體,將其分別經由α-2,3-唾液酸轉移酶 與 α-2,6-唾液酸轉移酶修飾後,可得一系列結構多樣性之唾液酸基化聚N-乙醯乳糖胺寡糖體衍生物。值得一提的是,不同於文獻中所描述,唾液酸基化一般位於末端半乳糖,我們成功的合成出修飾有兩個唾液酸的聚N-乙醯乳糖胺的六醣體 (4-26-2) 與三個唾液酸的聚N-乙醯乳糖胺的九醣體 (6-26-3),此二化合物利用化學合成亦是非常困難的。藉由所建構之酵素系統,快速有效合成多種聚N-乙醯乳糖胺多醣體衍生物,將有助於醣體生物學之研究。
    最後,利用磷酸葡萄糖胸苷轉移酶催化生成之醣核苷酸予體與磷酸葡萄糖胸苷轉移酶進行共結晶,成功解出九種不同的結晶晶體,對此進行結構分析。未來可藉此進行胺基酸點突變,增進磷酸葡萄糖胸苷轉移酶之受質容忍度與催化效率。


    Abstract
    Carbohydrates and their glycoconjugates are important in mediating structural and functional roles in numerous physiological processes, including various disease states. Despite significant advancement in the field like programmable one-pot assembly of carbohydrates, at the recent time, synthesis of complex carbohydrates and glycoconjugates remains elusive than that of other biomolecules. To simplify the synthesis of carbohydrates, enzymes provide an alternative means that are likely to be synthetically viable to chemists. In this regard, enzymes like glycosyltransferases and glycosidases have proven useful biocatalysts in constructing stereo- and regiospecific glycosidic linkages in complex carbohydrate structures. However, in the preparative-scale synthesis point, glycosyltransferases from microbial sources may exhibit greater flexibility because of their ability to synthesize a large range of oligosaccharide analogues at relatively high yields.
    My dissertation describes the expression of various recombinant bacterial enzymes; thymidylyltransferase (RmlA) of Aneurinibacillus thermoaerophilus, N-acetylhexosamine-1-kinase (NahK) of Bifidobacterium longum, β-1,3-N-acetyl-glucosaminyltransferase of Helicobacter pylori (HpGnT) and β-1,4-galactosyltransferase of Neisseria meningitides (NmGalT), from Escherichia coli. We determined that use of magnesium (Mg2+) as a cofactor and at 55 oC, numerous sugar nucleotides were effectively synthesized in milligram-scale by RmlA in two hours, and these include uridine 5′-diphosphate galactose (UDP-Gal), uridine 5′-diphosphate N-acetylglucosamine (UDP-GlcNAc), uridine 5′-diphosphate glucose (UDP-Glc) and thymidine 5′-diphosphate glucose (TDP-glucose). Additionally, RmlA was site-specifically and covalently immobilized on an MNP using a combination of intein-mediated protein expression and NCL, and found that Rm1A-MNP retains almost 95% of its activity following ten consecutive enzyme assays. We also demonstrated synthesis of UDP-GlcNAc and UDP-Gal by using corresponding kinases from relatively cheap starting materials such as GlcNAc and Gal. All sugar nucleotides were purified by ion-exchange column for analytical purposes.
    The dissertation also demonstrates oligo-LacNAc synthesis in a cost-effective way. Normally, oligo-LacNAcs exist as an inseparable mixtures isomer in nature. By using our newly developed enzymatic system, defined lengths of oligo-LacNAcs were synthesized in a one-pot fashion by employing expressed NmGalT and HpGnT in the presence of UDP-Gal and UDP-GlcNAc. Also, we have demonstrated the versatility of the method by incorporating structurally more complex sialic acid residues with different linkages at the hitherto unknown internal Gal unit of oligo-LacNAc backbone in combination with α-2,3-sialyltransferase and α-2,6-sialyltransferase. Thus, we have achieved the synthesis of sialyl-oligo-LacNAcs; a hexa-saccharide with two repeating sialyl-LacNAc unit (4-26-2) and a nona-saccharide with three repeating sialyl-LacNAc unit (6-26-3), the attachment of which at the internal galactose unit was otherwise difficult by chemical means. With the enzymatic system, we can efficiently and quickly produce oligo-LacNAc derivatives.
    Finally to gain insights into the structure-activity studies, we have determined nine crystal structures of RmlA complexed with NDP-sugars, which we have synthesized enzymatically. Therefore, with the analysis of these structures, we can create amino acid mutation to improve the substrate tolerance and the catalytic efficiency of RmlA for accelerating progress in glycobiology.

    目錄 縮寫表 xiv 酵素名稱中英對照表 xvii 第一章:緒論 1 1-1. 酵素在有機合成上的重要性 1 1-2. 醣類的重要性與其發展與困境 3 1-2-1. N-乙醯基乳糖胺/聚N -乙醯基乳糖胺 4 1-2-2. 唾液酸 6 1-3. 醣基轉移酶與醣核苷酸 7 1-3-1. 尿苷二磷酸半乳糖 8 1-3-2. 利用Lelior Pathway合成尿苷二磷酸半乳糖 9 1-3-3. 利用醣核苷轉移酶合成醣核苷酸 14 1-4. 磷酸葡萄糖胸苷轉移酶 17 1-5. N-乙醯基己胺糖激酶 18 1-5-1. 磷酸- N-乙醯基葡萄糖胺 18 1-5-2. N-乙醯基己胺糖激酶 20 1-6. β-1,4-半乳糖轉移酶 21 1-7. β-1,3-N-乙醯基葡萄糖胺轉移酶 23 1-8. 唾液酸轉移酶 25 1-9. 酵素固定化 26 1-9-1. 酵素固定化之載體 27 1-9-2. 磁性奈米粒子 29 1-9-3. 磁性奈米粒子之製備 29 1-10. 本論文目的 30 第二章:結果與討論 32 2-1. 以大腸桿菌誘導表現目標蛋白 32 2-1-1. 建構含目標蛋白基因之重組載體 32 2-1-2. 目標蛋白基因寡核酸引子之設計 34 2-1-3. 建構建構含目標基因之核酸質體 36 2-1-4. 誘導目標蛋白基因產物之表現 38 2-1-5. 目標蛋白之純化 39 2-2. Aneurinibacillus thermoaerophilus磷酸葡萄糖胸苷轉移酶 40 2-2-1. 磷酸葡萄糖胸苷轉移酶之純化與膠體電泳分析 40 2-2-2. 磷酸葡萄糖胸苷轉移酶酵素反應分析 42 2-3. 奈瑟氏腦膜炎雙球菌 β-1,4-半乳糖轉移酶 54 2-3-1. β-1,4-半乳糖轉移酶之純化與膠體電泳分析 54 2-3-2. β-1,4-半乳糖轉移酶酵素反應分析 57 2-4. 比菲德氏-龍根菌N-乙醯己醣胺磷酸激酶 67 2-4-1. N-乙醯己醣胺磷酸激酶之純化與膠體電泳分析 67 2-4-2. N-乙醯己醣胺磷酸激酶酵素反應分析 70 2-5. 幽門螺旋桿菌 β-1,3-N-乙醯葡萄糖胺轉移酶 78 2-5-1. β-1,3-N-乙醯葡萄糖胺轉移酶之純化與膠體電泳分析 79 2-5-2. β-1,3-N-乙醯葡萄糖胺轉移酶酵素反應分析 82 2-6. 酵素系統之合成與應用 84 2-6-1. 利用磷酸葡萄糖胸苷轉移酶大量製備尿苷二磷酸半乳糖 84 2-6-2. 利用N-乙醯己醣胺磷酸激酶大量製備1-磷酸-N-乙醯葡萄糖胺 85 2-6-3. 利用磷酸葡萄糖胸苷轉移酶大量製備尿苷二磷酸-N-乙醯葡萄糖胺 86 2-6-4. 一鍋化反應合成雙醣體N-乙醯乳醣胺 87 2-6-5. 一鍋化反應合成標記有螢光團cy3之三醣體N-乙醯葡萄糖胺-半乳糖-N-乙醯葡萄糖胺 88 2-6-6. 聚N-乙醯乳糖胺之合成 89 2-6-7. 唾液酸基化聚N-乙醯乳糖胺 93 2-6-8. 利用N-乙醯己醣胺磷酸激酶製備1-磷酸N-乙醯基半乳糖胺 98 2-7. 磷酸葡萄糖胸苷轉移酶之晶體結構分析 99 第三章:討論: 114 3-1. 建構目標蛋白基因 114 3-2. 大量表達目標蛋白 115 3-3. 目標蛋白穩定性之探討 118 3-4. 大量製備醣核苷 120 3-5. 聚N-乙醯乳糖胺之合成 121 3-6. 磷酸葡萄糖胸苷轉移酶結構分析 122 第四章:結論與展望 128 4-1. 結論 128 4-2. 未來展望:唾液酸轉移酶之受質專一性之研究 128 4-3. 未來展望:建立一系列聚N-乙醯乳糖胺多醣體衍伸物 129 4-4. 未來展望:磷酸葡萄糖胸苷轉移酶結構分析進行點突變 132 第五章:實驗材料與方法 133 5-1. 實驗材料 133 5-1-1. 載體 (vectors): 133 5-1-2. 大腸桿菌株 (Escherichia coli strains): 133 5-1-3. 目標蛋白基因來源: 134 5-1-4. 細菌培養基 (bacterial Cultural Media): 134 5-1-5. 去離子超純水: 135 5-2. 實驗藥品 135 5-2-1. 實驗用酵素: 135 5-2-2. 實驗用藥品: 136 5-3. 試驗分析儀器 136 5-3-1. 聚合酶鏈鎖反應溫度控制器: 136 5-3-2. 離心機 (centrifuge): 136 5-3-3. 超音波細胞粉碎機 (ultrasonicator): 137 5-3-4. 恆溫水浴機: 137 5-3-5. 核酸與蛋白質電泳分析套組: 137 5-3-6. 核酸及蛋白質照相系統: 137 5-3-7. 紫外-可見光吸收光譜儀 (UV/vis spectrophotometer): 137 5-3-8. 逆相高效能液相管柱層析儀 (RP HPLC): 138 5-4. 分子生物學實驗 138 5-4-1. 質體核酸 (Plasmid DNA) 之純化: 138 5-4-2. DNA 洋菜膠體電泳法114: 139 5-4-3. DNA 片段之分離純化: 140 5-4-4. 寡核酸引子之設計: 140 5-4-5. 聚合酶鏈鎖反應 (Polymerase Chain Reaction,PCR): 142 5-4-6. 勝任細胞 (Competent Cell) 之製作: 144 5-4-7. T - A Cloning: 145 5-4-8. 利用 Easy-A® High-Fidelity PCR Cloning Enzyme 之聚合酶鏈鎖反應: 145 5-4-9. pGEM®-T Easy Vector與插入段之黏接 (保存載體的構築): 146 5-4-10. 質體之切除: 147 5-4-11. 質體 pTXB1 與插入段之黏接 (表現載體的構築): 148 5-4-12. 將質體轉形至大腸桿菌 (Transformation): 149 5-4-13. 目標蛋白基因表現之誘導 (Induction): 150 5-4-14. 蛋白質粗抽取液之取得: 151 5-4-15. 包涵體中β-1,4-半乳糖轉移酶之萃取 151 5-5. 蛋白質化學實驗 152 5-5-1. 目標蛋白之純化: 152 5-5-2. 聚丙烯醯胺膠體電泳115, 116: 153 5-5-3. Tris - Glycine SDS-PAGE: 154 5-5-4. 聚丙烯醯胺膠片的製作: 155 5-5-5. 蛋白質定量法: 156 5-5-6. 酵素活性分析 158 5-5-7. 利用酵素反應進行醣體合成 160 參考文獻 166 附錄一:文獻中使用目標蛋白之基因核酸與胺基酸序列 185 附錄二:化合物光譜譜圖 190

    參考文獻
    1. Koeller, K. M.; Wong, C. H., Enzymes for chemical synthesis. Nature 2001, 409, 232-240.
    2. Drauz, K.; Waldmann, H.; Editors, Enzyme catalysis in organic synthesis: A comprehensive handbook, Volume III, 2nd Edition. 2002; p 568 pp.
    3. Drauz, K.; Waldmann, H.; Editors, Enzyme catalysis in organic synthesis: A comprehensive handbook, Volume I. 2002; p 334 pp.
    4. Drauz, K.; Waldmann, H.; Editors, Enzyme catalysis in organic synthesis: A comprehensive handbook, Volume II. 2002; p 654 pp.
    5. Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B., Industrial biocatalysis today and tomorrow. Nature 2001, 409, 258-268.
    6. Schoemaker, H. E.; Mink, D.; Wubbolts, M. G., Dispelling the myths--biocatalysis in industrial synthesis. Science 2003, 299, 1694-1697.
    7. Freichels, H.; Jérôme, R.; Jérôme, C., Sugar-labeled and PEGylated (bio)degradable polymers intended for targeted drug delivery systems. Carbohydr. Polym. 2011, 86, 1093-1106.
    8. Gray, W. D.; Che, P.; Brown, M.; Ning, X.; Murthy, N.; Davis, M. E., N-acetylglucosamine Conjugated to Nanoparticles Enhances Myocyte Uptake and Improves Delivery of a Small Molecule p38 Inhibitor for Post-infarct Healing. J. Cardiovasc Trans.l Res. 2011, 4, 631-643.
    9. Varki, A.; Cummings, R.; Esko, J.; Freeze, H.; Hart, G.; Marth, J.; Editors, Essentials of Glycobiology. 1999; p 653 pp.
    10. Lau, K. S.; Partridge, E. A.; Grigorian, A.; Silvescu, C. I.; Reinhold, V. N.; Demetriou, M.; Dennis, J. W., Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 2007, 129, 123-134.
    11. Ujita, M.; McAuliffe, J.; Suzuki, M.; Hindsgaul, O.; Clausen, H.; Fukuda, M. N.; Fukuda, M., Regulation of I-branched poly-N-acetyllactosamine synthesis. Concerted actions by I-extension enzyme, I-branching enzyme, and beta1,4-galactosyltransferase I. J. Biol. Chem. 1999, 274, 9296-9304.
    12. Hughes, R. C., Galectins in kidney development. Glycoconj. J. 2004, 19, 621-629.
    13. Hughes, R. C., Galectins as modulators of cell adhesion. Biochimie 2001, 83, 667-676.
    14. Elola, M. T.; Wolfenstein-Todel, C.; Troncoso, M. F.; Vasta, G. R.; Rabinovich, G. A., Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell. Mol. Life Sci. 2007, 64, 1679-1700.
    15. Rabinovich, G. A.; Toscano, M. A., Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nature reviews. Immunology 2009, 9, 338-352.
    16. Danguy, A.; Camby, I.; Kiss, R., Galectins and cancer. Biochimica et biophysica acta 2002, 1572, 285-293.
    17. Bidon-Wagner, N.; Le Pennec, J. P., Human galectin-8 isoforms and cancer. Glycoconj. J. 2004, 19, 557-563.
    18. Camby, I.; Le Mercier, M.; Lefranc, F.; Kiss, R., Galectin-1: a small protein with major functions. Glycobiology 2006, 16, 137R-157R.
    19. Rech, C.; Rosencrantz, R. R.; Krenek, K.; Pelantova, H.; Bojarova, P.; Romer, C. E.; Hanisch, F. G.; Kren, V.; Elling, L., Combinatorial One-Pot Synthesis of Poly-N-acetyllactosamine Oligosaccharides with Leloir-Glycosyltransferases. Adv. Synth. Catal. 2011, 353, 2492-2500.
    20. Ogata, M.; Murata, T.; Park, E. Y.; Usui, T., Chemoenzymatic Synthesis of Glycan-arranged Polymeric Inhibitors against Influenza Virus Infection. J. Appl. Glycosci. 2010, 57, 137-143.
    21. Mong, T. K.; Huang, C. Y.; Wong, C. H., A new reactivity-based one-pot synthesis of N-acetyllactosamine oligomers. J. Org. Chem. 2003, 68, 2135-2142.
    22. Varki, A., Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993, 3, 97-130.
    23. Schauer, R., Achievements and challenges of sialic acid research. Glycoconj. J. 2000, 17, 485-499.
    24. Angata, T.; Varki, A., Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem. Rev. 2002, 102, 439-469.
    25. Kelm, S.; Schauer, R.; Crocker, P. R., The Sialoadhesins--a family of sialic acid-dependent cellular recognition molecules within the immunoglobulin superfamily. Glycoconj. J. 1996, 13, 913-926.
    26. Renkonen, R., Endothelial sialyl Lewis x as a crucial glycan decoration on L-selectin ligands. Adv. Exp. Med. Biol. 1998, 435, 63-73.
    27. Schilling, B.; Goon, S.; Samuels, N. M.; Gaucher, S. P.; Leary, J. A.; Bertozzi, C. R.; Gibson, B. W., Biosynthesis of sialylated lipooligosaccharides in Haemophilus ducreyi is dependent on exogenous sialic acid and not mannosamine. Incorporation studies using N-acylmannosamine analogues, N-glycolylneuraminic acid, and 13C-labeled N-acetylneuraminic acid. Biochemistry 2001, 40, 12666-12677.
    28. Vimr, E.; Lichtensteiger, C., To sialylate, or not to sialylate: that is the question. Trends Microbial.2002, 10, 254-257.
    29. Bouchet, V.; Hood, D. W.; Li, J.; Brisson, J. R.; Randle, G. A.; Martin, A.; Li, Z.; Goldstein, R.; Schweda, E. K.; Pelton, S. I.; Richards, J. C.; Moxon, E. R., Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 8898-8903.
    30. Jennings, M. P.; Srikhanta, Y. N.; Moxon, E. R.; Kramer, M.; Poolman, J. T.; Kuipers, B.; van der Ley, P., The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitidis. Microbiology 1999, 145, 3013-3021.
    31. Plumbridge, J.; Vimr, E., Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. J. Bacteriol. 1999, 181, 47-54.
    32. Haltiwanger, R. S.; Lowe, J. B., Role of glycosylation in development. Annu. Rev. Biochem. 2004, 73, 491-537.
    33. Frey, P. A., The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J. 1996, 10, 461-470.
    34. Lazarowski, E. R., Quantification of extracellular UDP-galactose. Anal. Biochem. 2010, 396, 23-29.
    35. Wong, C. H.; Haynie, S. L.; Whitesides, G. M., Enzyme-catalyzed synthesis of N-acetyllactosamine with in situ regeneration of uridine 5'-diphosphate glucose and uridine 5'-diphosphate galactose. J. Org. Chem. 1982, 47, 5416-5418.
    36. Zervosen, A.; Elling, L., A Novel Three-Enzyme Reaction Cycle for the Synthesis of N-Acetyllactosamine with in Situ Regeneration of Uridine 5'-Diphosphate Glucose and Uridine 5'-Diphosphate Galactose. J. Am. Chem. Soc. 1996, 118, 1836-1840.
    37. Koizumi, S.; Endo, T.; Tabata, K.; Ozaki, A., Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nat. Biotechnol. 1998, 16, 847-850.
    38. Bulter, T.; Elling, L., Enzymatic synthesis of UDP-galactose on a gram scale. J. Mol. Catal. B: Enzym. 2000, 8, 281-284.
    39. Liu, Z.; Zhang, J.; Chen, X.; Wang, P. G., Combined biosynthetic pathway for de novo production of UDP-galactose: catalysis with multiple enzymes immobilized on agarose beads. Chembiochem 2002, 3, 348-355.
    40. Lee, J. H.; Chung, S. W.; Lee, H. J.; Jang, K. S.; Lee, S. G.; Kim, B. G., Optimization of the enzymatic one pot reaction for the synthesis of uridine 5'-diphosphogalactose. Bioprocess Biosyst. Eng. 2010, 33, 71-78.
    41. Jiang, J.; Biggins, J. B.; Thorson, J. S., A General Enzymatic Method for the Synthesis of Natural and "Unnatural" UDP- and TDP-Nucleotide Sugars. J. Am. Chem. Soc. 2000, 122, 6803-6804.
    42. Jiang, J.; Biggins, J. B.; Thorson, J. S., Expanding the pyrimidine diphospho sugar repertoire: the chemoenzymatic synthesis of amino- and acetamidoglucopyranosyl derivatives. Angew. Chem., Int. Ed. 2001, 40, 1502-1505.
    43. Mizanur, R. M.; Zea, C. J.; Pohl, N. L., Unusually broad substrate tolerance of a heat-stable archaeal sugar nucleotidyltransferase for the synthesis of sugar nucleotides. J. Am. Chem. Soc. 2004, 126, 15993-15998.
    44. Farias, S. T.; Bonato, M. C., Preferred amino acids and thermostability. Genet. Mol. Res. 2003, 2, 383-393.
    45. Graninger, M.; Kneidinger, B.; Bruno, K.; Scheberl, A.; Messner, P., Homologs of the Rml enzymes from Salmonella enterica are responsible for dTDP-beta-L-rhamnose biosynthesis in the gram-positive thermophile Aneurinibacillus thermoaerophilus DSM 10155. Appl. Environ. Microbiol. 2002, 68, 3708-3715.
    46. Kunz, C.; Rudloff, S.; Baier, W.; Klein, N.; Strobel, S., Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu. Rev. Nutr. 2000, 20, 699-722.
    47. Berliner, L. J.; Robinson, R. D., Structure-function relationships in lactose synthase. Structural requirements of the uridine 5'-diphosphate galactose binding site. Biochemistry 1982, 21, 6340-6343.
    48. Srivastava, G.; Hindsgaul, O.; Palcic, M. M., Chemical synthesis and kinetic characterization of UDP-2-deoxy-D-lyxo-hexose("UDP-2-deoxy-D-galactose"), a donor-substrate for beta-(1→4)-D-galactosyltransferase. Carbohydr. Res. 1993, 245, 137-144.
    49. Hindsgaul, O.; Kaur, K. J.; Srivastava, G.; Blaszczyk-Thurin, M.; Crawley, S. C.; Heerze, L. D.; Palcic, M. M., Evaluation of deoxygenated oligosaccharide acceptor analogs as specific inhibitors of glycosyltransferases. J. Biol. Chem. 1991, 266, 17858-17862.
    50. Kodama, H.; Kajihara, Y.; Endo, T.; Hashimoto, H., Synthesis of UDP-6-deoxy- and -6-fluoro-D-galactoses and their enzymatic glycosyl transfer to mono- and biantennary carbohydrate chains. Tetrahedron Lett. 1993, 34, 6419-6422.
    51. Kajihara, Y.; Endo, T.; Ogasawara, H.; Kodama, H.; Hashimoto, H., Enzymic transfer of 6-modified D-galactosyl residues: synthesis of biantennary penta- and hepta-saccharides having two 6-deoxy-D-galactose residues at the nonreducing end and evaluation of 6-deoxy-D-galactosyl transfer to glycoprotein using bovine beta-(1→4)-galactosyltransferase and UDP-6-deoxy-D-galactose. Carbohydr. Res. 1995, 269, 273-294.
    52. Palcic, M. M.; Hindsgaul, O., Flexibility in the donor substrate specificity of beta 1,4-galactosyltransferase: application in the synthesis of complex carbohydrates. Glycobiology 1991, 1, 205-209.
    53. Yuasa, H.; Hindsgaul, O.; Palcic, M. M., Chemical-enzymic synthesis of 5'-thio-N-acetyllactosamine: the first disaccharide with sulfur in the ring of the non-reducing sugar. J. Am. Chem. Soc. 1992, 114, 5891-5892.
    54. Berliner, L. J.; Davis, M. E.; Ebner, K. E.; Beyer, T. A.; Bell, J. E., The lactose synthase acceptor site: a structural map derived from acceptor studies. Molecular and cellular biochemistry 1984, 62, 37-42.
    55. Palcic, M. M.; Srivastava, O. P.; Hindsgaul, O., Transfer of D-galactosyl groups to 6-O-substituted 2-acetamido-2-deoxy-D-glucose residues by use of bovine D-galactosyltransferase. Carbohydr. Res. 1987, 159, 315-324.
    56. Ichikawa, Y.; Lin, Y. C.; Dumas, D. P.; Shen, G. J.; Garcia-Junceda, E.; Williams, M. A.; Bayer, R.; Ketcham, C.; Walker, L. E.; et al., Chemical-enzymic synthesis and conformational analysis of sialyl Lewis X and derivatives. J. Am. Chem. Soc. 1992, 114, 9283-9298.
    57. Öhrlein, R.; Ernst, B.; Berger, E. G., Galactosylation of non-natural glycosides with human β-d-galactosyltransferase on a preparative scale. Carbohydr. Res. 1992, 236, 335-338.
    58. Baisch, G.; Öhrlein, R.; Ernst, B., Enzymatic galactosylation of non-natural glucosamide-acceptors. Bioorg. Med. Chem. Lett. 1996, 6, 749-754.
    59. Kajihara, Y.; Kodama, H.; Endo, T.; Hashimoto, H., Novel features of acceptor recognition by β-(1→4)-galactosyltransferase. Carbohydr. Res. 1998, 306, 361-378.
    60. Wong, C. H.; Ichikawa, Y.; Krach, T.; Gautheron-Le Narvor, C.; Dumas, D. P.; Look, G. C., Probing the acceptor specificity of beta-1,4-galactosyltransferase for the development of enzymatic synthesis of novel oligosaccharides. J. Am. Chem. Soc. 1991, 113, 8137-8145.
    61. Suda, Y.; Kim, Y.-M.; Ogawa, T.; Yasui, N.; Hasegawa, Y.; Kashihara, W.; Shimoyama, T.; Aoyama, K.; Nagata, K.; Tamura, T.; Kusumoto, S., Chemical structure and biological activity of a lipid A component from Helicobacter pylori strain 206. J. .Endotoxin Res. 2001, 7, 95-104.
    62. Ogawa, T.; Suda, Y.; Kashihara, W.; Hayashi, T.; Shimoyama, T.; Kusumoto, S.; Tamura, T., Immunobiological activities of chemically defined lipid A from Helicobacter pylori LPS in comparison with Porphyromonas gingivalis lipid A and Escherichia coli-type synthetic lipid A (compound 506). Vaccine 1997, 15, 1598-1605.
    63. Logan, S. M.; Altman, E.; Mykytczuk, O.; Brisson, J. R.; Chandan, V.; Schur, M. J.; St Michael, F.; Masson, A.; Leclerc, S.; Hiratsuka, K.; Smirnova, N.; Li, J.; Wu, Y.; Wakarchuk, W. W., Novel biosynthetic functions of lipopolysaccharide rfaJ homologs from Helicobacter pylori. Glycobiology 2005, 15, 721-733.
    64. Campbell, J. A.; Davies, G. J.; Bulone, V.; Henrissat, B., A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 1997, 326, 929-939.
    65. Coutinho, P. M.; Deleury, E.; Davies, G. J.; Henrissat, B., An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 2003, 328, 307-317.
    66. Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B.; Zhang, J.; Zhang, Y.; Jia, Q.; Chen, X., A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 2005, 127, 17618-17619.
    67. Cheng, J.; Huang, S.; Yu, H.; Li, Y.; Lau, K.; Chen, X., Trans-sialidase activity of Photobacterium damsela alpha2,6-sialyltransferase and its application in the synthesis of sialosides. Glycobiology 2010, 20, 260-268.
    68. Mine, T.; Katayama, S.; Kajiwara, H.; Tsunashima, M.; Tsukamoto, H.; Takakura, Y.; Yamamoto, T., An alpha2,6-sialyltransferase cloned from Photobacterium leiognathi strain JT-SHIZ-119 shows both sialyltransferase and neuraminidase activity. Glycobiology 2010, 20, 158-165.
    69. Cheng, J.; Yu, H.; Lau, K.; Huang, S.; Chokhawala, H. A.; Li, Y.; Tiwari, V. K.; Chen, X., Multifunctionality of Campylobacter jejuni sialyltransferase CstII: characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Glycobiology 2008, 18, 686-697.
    70. Cao, L.; Langen, L.; Sheldon, R. A., Immobilised enzymes: carrier-bound or carrier-free? Curr. Opin. Biotechnol. 2003, 14, 387-394.
    71. Wei, Y.; Xu, J. G.; Feng, Q. W.; Dong, H.; Lin, M. D., Encapsulation of enzymes in mesoporous host materials via the nonsurfactant-templated sol-gel process. Mater. Lett. 2000, 44, 6-11.
    72. Lei, C. H.; Shin, Y. S.; Liu, J.; Ackerman, E. J., Entrapping enzyme in a functionalized nanoporous support. J. Am. Chem. Soc. 2002, 124, 11242-11243.
    73. Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933-937.
    74. Perez, J. M.; Josephson, L.; O'Loughlin, T.; Hogemann, D.; Weissleder, R., Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 2002, 20, 816-820.
    75. Suh, J. S.; Lee, J. H.; Huh, Y. M.; Jun, Y.; Seo, J.; Jang, J.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Cheon, J., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2007, 13, 95-99.
    76. Hu, A. G.; Yee, G. T.; Lin, W. B., Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones. J. Am. Chem. Soc. 2005, 127, 12486-12487.
    77. Minc, N.; Futterer, C.; Dorfman, K.; Bancaud, A.; Gosse, C.; Goubault, C.; Viovy, J. L., Quantitative microfluidic separation of DNA in self-assembled magnetic matrixes. Anal. Chem. 2004, 76, 3770-3776.
    78. Doyle, P. S.; Bibette, J.; Bancaud, A.; Viovy, J. L., Self-assembled magnetic matrices for DNA separation chips. Science 2002, 295, 2237-2237.
    79. Shih, P.-H.; Shiu, J.-Y.; Lin, P.-C.; Lin, C.-C.; Veres, T.; Chen, P., On chip sorting of bacterial cells using sugar-encapsulated magnetic nanoparticles. J. Appl. Phys. 2008, 103, 07A316/311-307A316/313.
    80. Lin, C. C.; Yeh, Y. C.; Yang, C. Y.; Chen, C. L.; Chen, G. F.; Chen, C. C.; Wu, Y. C., Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J. Am. Chem. Soc. 2002, 124, 3508-3509.
    81. Yoon, T. J.; Kim, J. S.; Kim, B. G.; Yu, K. N.; Cho, M. H.; Lee, J. K., Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. Angew. Chem., Int. Ed. 2005, 44, 1068-1071.
    82. Lewin, M.; Carlesso, N.; Tung, C. H.; Tang, X. W.; Cory, D.; Scadden, D. T.; Weissleder, R., Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 2000, 18, 410-414.
    83. Lin, P. C.; Chou, P. H.; Chen, S. H.; Liao, H. K.; Wang, K. Y.; Chen, Y. J.; Lin, C. C., Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2006, 2, 485-489.
    84. Sun, S.; Zeng, H., Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 2002, 124, 8204-8205.
    85. Park, S. J.; Kim, S.; Lee, S.; Khim, Z. G.; Char, K.; Hyeon, T., Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 2000, 122, 8581-8582.
    86. Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P., Colloidal nanocrystal shape and size control: The case of cobalt. Science 2001, 291, 2115-2117.
    87. Park, J.; An, K. J.; Hwang, Y. S.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T., Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891-895.
    88. Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989-1992.
    89. Shevchenko, E. V.; Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H., Colloidal synthesis and self-assembly of COPt3 nanocrystals. J. Am. Chem. Soc. 2002, 124, 11480-11485.
    90. Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J., Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 2004, 104, 3893-3946.
    91. Gun'ko, Y.; O' Dalaigh, C.; Corr, S. A.; Connon, S. J., A magnetic-nanoparticle-supported 4-N,N-dialkylaminopyridine catalyst: Excellent reactivity combined with facile catalyst recovery and recyclability. Angew. Chem., Int. Ed. 2007, 46, 4329-4332.
    92. Lue, R. Y.; Chen, G. Y.; Hu, Y.; Zhu, Q.; Yao, S. Q., Versatile protein biotinylation strategies for potential high-throughput proteomics. J. Am. Chem. Soc. 2004, 126, 1055-1062.
    93. Nunez, H. A.; Barker, R., The metal ion catalyzed decomposition of nucleoside diphosphate sugars. Biochemistry 1976, 15, 3843-3847.
    94. Yu, H.; Karpel, R.; Chen, X., Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. Bioorg. Med. Chem. 2004, 12, 6427-6435.
    95. Yu, C. C.; Lin, P. C.; Lin, C. C., Site-specific immobilization of CMP-sialic acid synthetase on magnetic nanoparticles and its use in the synthesis of CMP-sialic acid. Chem Commun (Camb) 2008, 1308-1310.
    96. Rawat, S.; Raman Suri, C.; Sahoo, D. K., Molecular mechanism of polyethylene glycol mediated stabilization of protein. Biochem. Biophys. Res. Commun. 2010, 392, 561-566.
    97. Wakarchuk, W. W.; Cunningham, A.; Watson, D. C.; Young, N. M., Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis. Protein Eng. 1998, 11, 295-302.
    98. Endo, T.; Koizumi, S.; Tabata, K.; Ozaki, A., Cloning and expression of beta1,4-galactosyltransferase gene from Helicobacter pylori. Glycobiology 2000, 10, 809-813.
    99. Boeggeman, E. E.; Balaji, P. V.; Qasba, P. K., Functional domains of bovine beta-1,4 galactosyltransferase. Glycoconj. J. 1995, 12, 865-878.
    100. Boeggeman, E. E.; Ramakrishnan, B.; Qasba, P. K., The N-terminal stem region of bovine and human beta1,4-galactosyltransferase I increases the in vitro folding efficiency of their catalytic domain from inclusion bodies. Protein Expr. Purif. 2003, 30, 219-229.
    101. Park, J. E.; Do, S. I.; Lee, K. S.; Lee, S. S., A mutagenic study of beta-1,4-galactosyltransferases from Neisseria meningitidis. J. Biochem. Mol. Biol. 2004, 37, 597-602.
    102. Hinchcliff, K. W.; McKeever, K. H.; Muir, W. W.; Sams, R. A., Furosemide reduces accumulated oxygen deficit in horses during brief intense exertion. J. Appl. Physiol. 1996, 81, 1550-1554.
    103. Marques Jr, E. T., Jr.; Ichikawa, Y.; Strand, M.; August, J. T.; Hart, G. W.; Schnaar, R. L., Fucosyltransferases in Schistosoma mansoni development. Glycobiology 2001, 11, 249-259.
    104. Geddes, C. D.; Lakowicz, J. R.; Editors, Topics in Fluorescence Spectroscopy, Volume 10: Advanced Concepts n Fluorescence Sensing Part B: Macromolecular Sensing. 2005; p 294 pp.
    105. Ojida, A.; Takashima, I.; Kohira, T.; Nonaka, H.; Hamachi, I., Turn-On Fluorescence Sensing of Nucleoside Polyphosphates Using a Xanthene-Based Zn(II) Complex Chemosensor. J. Am. Chem. Soc. 2008, 130, 12095-12101.
    106. Haltia, T.; Freire, E., Forces and Factors That Contribute to the Structural Stability of Membrane-Proteins. Bba-Bioenergetics 1995, 1228, 1-27.
    107. Kapust, R. B.; Waugh, D. S., Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 1999, 8, 1668-1674.
    108. Bach, H.; Mazor, Y.; Shaky, S.; Shoham-Lev, A.; Berdichevsky, Y.; Gutnick, D. L.; Benhar, I., Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies. J. Mol. Biol. 2001, 312, 79-93.
    109. Pierson, D. L.; Brien, J. M., Human carbamylphosphate synthetase I. Stabilization, purification, and partial characterization of the enzyme from human liver. J. Biol. Chem. 1980, 255, 7891-7895.
    110. Morgavi, D. P.; Newbold, C. J.; Beever, D. E.; Wallace, R. J., Stability and stabilization of potential feed additive enzymes in rumen fluid. Enzyme Microb. Technol. 2000, 26, 171-177.
    111. Chang, B. S.; Mahoney, R. R., Enzyme thermostabilization by bovine serum albumin and other proteins: evidence for hydrophobic interactions. Biotechnol. Appl. Biochem. 1995, 22, 203-214.
    112. Nishimoto, M.; Kitaoka, M., Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Appl. Environ. Microbiol. 2007, 73, 6444-6449.
    113. Chevet, E.; Lemaitre, G.; Katinka, M. D., Low concentrations of tetramethylammonium chloride increase yield and specificity of PCR. Nucleic Acids Res. 1995, 23, 3343-3344.
    114. McDonll, M. W.; Simon, M. N.; Studier, F. W. , Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J. Mol. Biol. 1977, 110, 119-146.
    115. Laemmli, U. K., Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680-685.
    116. Schagger, H.; Jagow, G. V., Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987, 166, 368-379.
    117. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254.
    118. Yu, H.; Yu, H.; Karpel, R.; Chen, X., Chemoenzymatic synthesis of CMP–sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP–sialic acid synthetases. Bioorg. Med. Chem. 2004, 12, 6427-6435.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE