研究生: |
馮軾文 Feng, Shih Wen |
---|---|
論文名稱: |
室溫下量子點產生之單光子的調變與純化 Modulation and Purification of Single Photons from Room-Temperature Quantum Dot |
指導教授: |
褚志崧
Chuu, Chih Sung |
口試委員: |
張存續
Chang, Tsun-Hsu 劉怡維 Liu,Yi- Wei |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 單光子 、量子點 、純度 、調變 |
外文關鍵詞: | single photon, quantum dot, purity, modulation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
實驗上在室溫下利用單顆羧基化硒化鎘/硫化鋅量子點(carboxyl CdSe/ZnS quantum dot)作為單光子源,得到輻射壽命(radiative lifetime)長至100ns左右的螢光[1],並基於這種時間上足夠長的螢光特性,利用聲光調變器(acoustic-optic modulator, AOM)控制量子點(quantum dot, QD)所放出的單光子波包在時間(空間)上的強度,以改變波包的形狀,得到方波與三角波兩種異於原先的放光形式。
另外使用聲光調變器降低量子點放光初期數十奈秒內的光強度,並且測量其在二階相干性(second-order correlation)上的表現,成功地發現消除每次量子點在放光初期數十奈秒的螢光後,單顆量子點的螢光更接近完美的單光子,g^((2)) (0)從原先的0.06最低降至0.02,並且趨於定值。接著再直接分析量子點的螢光在時間上的分佈,以簡單的模型來分析經過調變後的量子點螢光在雙激子(biexciton)數量上的變化,得到了與實驗測得的二階相關函數(second-order correlation function)有相同的變化趨勢,成功地驗證我們對於單光子純化上的理解。
In our experiment, we used single carboxyl CdSe/ZnS quantum dots as a single photon source to generate single photon wave packet with a temporal width of 100ns in room temperature. Base on this characteristic, we used acoustic-optic modulator(AOM) to modulate the amplitude and shape of the single photon wave packet in the time domain. We obtained square shape and triangle shape wave packets.
In the other part of the experiment, we suppressed the intensity of QD fluorescence in the first tens of nanoseconds, and then measured the second-order intensity correlation g^((2)) (τ) of the modulated wave packet. We successfully purified the modulated single photons. The value of g^((2)) (0) dropped to 0.02, being 33% of its original value, and became a constant value. Moreover, we analyzed the distribution of QD fluorescence in the time domain to build a simple model to obtain the change of amount of biexciton in QD fluorescence. The analysis and our experimental observation are in good agreement, proving the principle of purifying single photons.
[1] M. Nasilowski, P. Spinicelli, G. Patriarche, and B. Dubertret, Nano Lett. 15 (6), 3953 (2015)
[2] K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, Sci. Rep. 5, 14383 (2015)
[3] H.-W. Cheng, C.-T. Yuan, J.-S. Wang, T.-N. Lin, J.-L. Shen, Y.-J. Hung, J. Tang, F.-G. Tseng, J. Phys. Chem. C 2014 , 118 ( 31 ), 18126 – 18132
[4] Ates, S. et al., Sci. Rep. 3, 1397, 2013.
[5] Stobinska, M.; Alber, G.; Leuchs, G. Eur. Phys. Lett. 2009, 86, 14007.
[6] Trautmann N.,Alber G., Agarwal G.S. and Leuchs G., Phys. Rev. Lett., 114 (2015) 173601
[7] N. Somaschi et al., Nat. Photonics 10, 340 (2016)
[8] Park, Y.-S.; Bae, W. K.; Pietryga, J. M.; Klimov, V. I., ACS Nano, p. 7288–7296., 8
[9] H. Naiki, S. Masuo, S. Machida, and A. Itaya, J. Phys. Chem. C 115, 23299 (2011)
[10] G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, Phys. Rev. Lett. 83, 4417 (1999)
[11] S Schumacher, A Zrenner - SPIE OPTO, 2013
[12] T. Chakraborty, F. Peeters, U. Sivan(2002)Nano-Physics & Bio-Electronics: A New Odyssey
[13] S. Rudin, T. L. Reinecke, and M. Bayer, Phys. Rev. B 74, 161305 (R) (2006).
[14] Holmes, M. J.; Choi, K.; Kako, S.; Arita, M.; Arakawa, Y. Nano Lett. 2014, 14, 982.
[15] X. Ding et al., Phys. Rev. Lett. 116, 020401 (2016).
[16] The quantum theory of light Rodney Loudon, Oxford University Press (1990)
[17] L. Yao-Yi, C. Mu-Tian, Z. Hui-Jun, L. Shao-Ding, and W. Qu-Quan, Chin. Phys. Lett. 22,2960 (2005).
[18] P. Kolchin, C. Belthangady, S.W. Du, G.Y. Yin, and S.E. Harris, Phys. Rev. Lett.101, 103601 (2008)
[19] Ma, X., Hartmann, N. F., Baldwin, J. K. S., Doorn, S. K. & Htoon, H. Nat. Nanotech. 10, 671–675 (2015).
[20] C. Santori et al. Phys. Rev. Lett. 86, 1502 (2001)