研究生: |
何亞奇 Ho, Ya-Chi |
---|---|
論文名稱: |
奈米顆粒對熱管銅網毛細蒸發特性影響的可視化研究 Visualization of the effects of nanoparticles on the evaporation characteristics in a mesh wick of heat pipes |
指導教授: |
王訓忠
Wong, Shwin-Chung |
口試委員: |
許文震
簡國祥 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 奈米顆粒 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用自行設計之可視化平板熱管,使用水、甲醇、丙酮三種不同工作流體,觀察與測量在100+200 mesh 銅網蒸發區中燒結奈米銅粉或添加奈米氧化鋁粉對蒸發特性的影響。在水方面,有奈米顆粒的蒸發熱阻值會低於無奈米顆粒的蒸發熱阻值,且最大熱傳量會增加,此外不論有無加奈米顆粒,皆無沸騰產生;甲醇方面,有時會產生沸騰,沸騰的出現會使得蒸發熱阻值比未出現沸騰時明顯的降低,然而最大熱傳量並無太大差異;丙酮方面,有無添加奈米顆粒對於蒸發熱阻值及最大熱傳量並無太大影響,且皆可在實驗過程中觀察到大面積沸騰現象。
[1] A. Faghri, Heat Pipe Science and Technology, Taylor & Francis, 1995.
[2] C. Li, G.P. Peterson, Y. Wang, Evaporation/boiling in thin capillary wicks (1)-wick thickness effects, ASME J. Heat Transfer, 128(2006)1314-1319.
[3] C. Li, G.P. Peterson, Evaporation/boiling in thin capillary wicks (2)-effects of volumetric porosity and mesh size, ASME J. Heat Transfer, 128(2006)1320-1328.
[4] Y. Wang, K. Vafai, An experimental investigation of thermal performance of an asymmetrical flat plate heat pipe, Int. J. Heat Mass Transfer, 43 (2000) 2657-2668.
[5] Y. Wang, G.P. Peterson, Investigation of a novel flat heat pipe, ASME J. Heat Transfer, 127(2005)165-170.
[6] J.-Y. Chang, R.S. Prasher, S. Prstic, P. Cheng, H.B. Ma, Evaporative thermal performance of vapor chambers under nonuniform heating conditions, ASME J. Heat Transfer, 130(2008)121501(9pp).
[7] J.-H. Liou, C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer, 53(2010)1498-1506.
[8] S.-C. Wong, J.-H. Liou, C.-W. Chang, Evaporation resistance measurement and visualization for sinter copper-powder evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer, 53(2010)3792-3798.
[9] S.W. Chi, Heat Pipe Theory and Practice, McGraw-Hill, 1976.
[10] S.-C. Wong, Y.-C. Lin, J.-H. Liou, Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone, Int. J. Therm. Sci.52 (2012) 154-160.
[11] S.-C. Wong, Y.-C. Lin, Effect of copper surface wettability on the evaporation performance: tests in a flat-plate heat pipe with visualization, Int. J. Heat Mass Transfer, 54(2011)3921-3926.
[12] C. Maxwell, A Treatise on Electricity and Magnetism, 2nd Ed., Oxford University Press, New York, (1904)435-441.
[13] R.L. Hamilton and O.K. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind & Engr. Chem. Fundamentals, 1(1962)187-191.
[14] A.S. Ahuja, Augmentation of heat transfer in laminar flow of polystyrene suspensions, J. Appl. Phys. 46(1975)3408-3425.
[15] S. U. S. Choi, Enhancing thermal conductivity of fluids with nano-particles. ASME Fed 231(1995)99-105.
[16] P. Keblinski, S. R. Phillopt, S. U. S. Choi, J. A. Eastman, Mechanisms of Heat Flow in Suspensions of Nano-sized Particles(Nano-fluids), Int. J. Heat Mass Transfer 45(2002)855-863.
[17] S. M. You, J. H. Kim, K. H. Kim, Effect of nano-particles on critical heat flux of water in pool boiling heat transfer, Appl. Phys. Lett., 83(2003)3374-3376.
[18] A. M. Kwark, R. Kumar, C. Moreno, J. Yoo, S. M. You, Pool boiling characteristics of low concentration nanofluids, Int. J. Heat Mass Transfer 53(2010)972-981.
[19] S. J. Kim, I. C. Bang, J. Buongiorno, L.W. Hu, Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids, Appl. Phys. Lett. 89(2006)153107.
[20] C. Y. Tsai, H. T. Chien, P. P. Ding, B. Chan, T. Y. Luh, P. H. Chen, Effect of Structural Character of Glod Nanoparticles in Nanofluid on Heat Pipe Thermal Performance, Mater. Lett. 58(2004)1461- 1465.
[21] S.-W. Kang, W.-C. Wei, S.-H. Tsai, C.-C. Huang, Experimental investigation of nanofluids on sintered heat pipe thermal performance, Appl. Therm. Eng. 29 (2009) 973–979.
[22] Z. Liu, Q. Zhu, Application of aqueous nanofluids in a horizontal mesh heat pipe, Energy Convers. Manage. 52(2011)292-300.
[23] K.H. Do, H.J. Ha, S.P. Jang, Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids, Int. J. Heat Mass Transfer 53 (2010) 5888–5894.
[24] S. G. Bankoff, Ebullition from solid surfaces in the absence of a pre-existing gaseous phase, Trans. of ASME 79(1957)735.
[25] W. Tong, A. Bar-Cohen, T. W. Simon, S. M. You., Contact angle effects on boiling incipience of highly-wetting liquids, Int. J. Heat Mass Transfer 33(1990) 91-103.
[26] Y.-Y. Hsu, R.W. Graham, Transport Processes in Boiling and Two-Phase Systems, Hemisphere, Washington, DC, 1976.
[27] J. Mitrovic, How to create an efficient surface for nucleate boiling? Int. J. Therm. Sci. 45 (2006) 1-15.