簡易檢索 / 詳目顯示

研究生: 何亞奇
Ho, Ya-Chi
論文名稱: 奈米顆粒對熱管銅網毛細蒸發特性影響的可視化研究
Visualization of the effects of nanoparticles on the evaporation characteristics in a mesh wick of heat pipes
指導教授: 王訓忠
Wong, Shwin-Chung
口試委員: 許文震
簡國祥
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 60
中文關鍵詞: 奈米顆粒
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用自行設計之可視化平板熱管,使用水、甲醇、丙酮三種不同工作流體,觀察與測量在100+200 mesh 銅網蒸發區中燒結奈米銅粉或添加奈米氧化鋁粉對蒸發特性的影響。在水方面,有奈米顆粒的蒸發熱阻值會低於無奈米顆粒的蒸發熱阻值,且最大熱傳量會增加,此外不論有無加奈米顆粒,皆無沸騰產生;甲醇方面,有時會產生沸騰,沸騰的出現會使得蒸發熱阻值比未出現沸騰時明顯的降低,然而最大熱傳量並無太大差異;丙酮方面,有無添加奈米顆粒對於蒸發熱阻值及最大熱傳量並無太大影響,且皆可在實驗過程中觀察到大面積沸騰現象。


    摘要 目錄 圖表目錄 符號說明 第一章 緒論 1.1研究背景 1.2基礎原理與文獻回顧 1.2.1熱管的結構 1.2.2熱管毛細層之熱傳模式 1.2.3熱管之工作原理 1.2.4工作流體之影響 1.2.5奈米流體熱傳 1.2.6沸騰熱傳 1.3研究目的與動機 第二章 實驗設備與方法 2.1奈米顆粒製備 2.2 平板熱管實驗 2.2.1 平板熱管實驗設計 2.2.2 平板熱管實驗測量之架構與配置 2.2.3 實驗步驟 2.2.3.1 前置作業流程 2.2.3.2 實驗流程 2.2.4 實驗結果觀察 第三章 實驗結果與討論 3.1 燒結100+200 mesh 銅網-三種工作流體之蒸發特性 3.2 添加奈米顆粒 3.2.1水添加奈米顆粒的影響 3.2.2甲醇添加奈米顆粒的影響 3.2.3丙酮添加奈米顆粒的影響 3.3 臨界凹坑尺寸推算 第四章 結論 參考文獻

    [1] A. Faghri, Heat Pipe Science and Technology, Taylor & Francis, 1995.
    [2] C. Li, G.P. Peterson, Y. Wang, Evaporation/boiling in thin capillary wicks (1)-wick thickness effects, ASME J. Heat Transfer, 128(2006)1314-1319.
    [3] C. Li, G.P. Peterson, Evaporation/boiling in thin capillary wicks (2)-effects of volumetric porosity and mesh size, ASME J. Heat Transfer, 128(2006)1320-1328.
    [4] Y. Wang, K. Vafai, An experimental investigation of thermal performance of an asymmetrical flat plate heat pipe, Int. J. Heat Mass Transfer, 43 (2000) 2657-2668.
    [5] Y. Wang, G.P. Peterson, Investigation of a novel flat heat pipe, ASME J. Heat Transfer, 127(2005)165-170.
    [6] J.-Y. Chang, R.S. Prasher, S. Prstic, P. Cheng, H.B. Ma, Evaporative thermal performance of vapor chambers under nonuniform heating conditions, ASME J. Heat Transfer, 130(2008)121501(9pp).
    [7] J.-H. Liou, C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer, 53(2010)1498-1506.
    [8] S.-C. Wong, J.-H. Liou, C.-W. Chang, Evaporation resistance measurement and visualization for sinter copper-powder evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer, 53(2010)3792-3798.
    [9] S.W. Chi, Heat Pipe Theory and Practice, McGraw-Hill, 1976.
    [10] S.-C. Wong, Y.-C. Lin, J.-H. Liou, Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone, Int. J. Therm. Sci.52 (2012) 154-160.
    [11] S.-C. Wong, Y.-C. Lin, Effect of copper surface wettability on the evaporation performance: tests in a flat-plate heat pipe with visualization, Int. J. Heat Mass Transfer, 54(2011)3921-3926.
    [12] C. Maxwell, A Treatise on Electricity and Magnetism, 2nd Ed., Oxford University Press, New York, (1904)435-441.
    [13] R.L. Hamilton and O.K. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind & Engr. Chem. Fundamentals, 1(1962)187-191.
    [14] A.S. Ahuja, Augmentation of heat transfer in laminar flow of polystyrene suspensions, J. Appl. Phys. 46(1975)3408-3425.
    [15] S. U. S. Choi, Enhancing thermal conductivity of fluids with nano-particles. ASME Fed 231(1995)99-105.
    [16] P. Keblinski, S. R. Phillopt, S. U. S. Choi, J. A. Eastman, Mechanisms of Heat Flow in Suspensions of Nano-sized Particles(Nano-fluids), Int. J. Heat Mass Transfer 45(2002)855-863.
    [17] S. M. You, J. H. Kim, K. H. Kim, Effect of nano-particles on critical heat flux of water in pool boiling heat transfer, Appl. Phys. Lett., 83(2003)3374-3376.
    [18] A. M. Kwark, R. Kumar, C. Moreno, J. Yoo, S. M. You, Pool boiling characteristics of low concentration nanofluids, Int. J. Heat Mass Transfer 53(2010)972-981.
    [19] S. J. Kim, I. C. Bang, J. Buongiorno, L.W. Hu, Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids, Appl. Phys. Lett. 89(2006)153107.
    [20] C. Y. Tsai, H. T. Chien, P. P. Ding, B. Chan, T. Y. Luh, P. H. Chen, Effect of Structural Character of Glod Nanoparticles in Nanofluid on Heat Pipe Thermal Performance, Mater. Lett. 58(2004)1461- 1465.
    [21] S.-W. Kang, W.-C. Wei, S.-H. Tsai, C.-C. Huang, Experimental investigation of nanofluids on sintered heat pipe thermal performance, Appl. Therm. Eng. 29 (2009) 973–979.
    [22] Z. Liu, Q. Zhu, Application of aqueous nanofluids in a horizontal mesh heat pipe, Energy Convers. Manage. 52(2011)292-300.
    [23] K.H. Do, H.J. Ha, S.P. Jang, Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids, Int. J. Heat Mass Transfer 53 (2010) 5888–5894.
    [24] S. G. Bankoff, Ebullition from solid surfaces in the absence of a pre-existing gaseous phase, Trans. of ASME 79(1957)735.
    [25] W. Tong, A. Bar-Cohen, T. W. Simon, S. M. You., Contact angle effects on boiling incipience of highly-wetting liquids, Int. J. Heat Mass Transfer 33(1990) 91-103.
    [26] Y.-Y. Hsu, R.W. Graham, Transport Processes in Boiling and Two-Phase Systems, Hemisphere, Washington, DC, 1976.
    [27] J. Mitrovic, How to create an efficient surface for nucleate boiling? Int. J. Therm. Sci. 45 (2006) 1-15.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE