研究生: |
林思妤 Lin, Sih-Yu |
---|---|
論文名稱: |
溫度敏感型聚酯類水膠作為免疫抑制藥物傳遞系統之應用 Thermosensitive Polyester Hydrogel for Application of Immunosuppressive Drug Delivery |
指導教授: |
朱一民
Chu, I-Ming |
口試委員: |
劉繼賢
Liu, Chi-Hsien 姚少凌 Yao, Chao-Ling |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 溫度敏感型聚酯類水膠 、他克莫司 |
外文關鍵詞: | thermosensitive polyester hydrogel |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究選用溫度敏感型聚酯類水膠作為藥物載體,包覆疏水性免疫抑制藥物他克莫司,期望能藉由藥物控制釋放系統,達到緩慢且持續釋放的效果。材料的製備是以methoxy poly(ethylene glycol)作為起始劑,與D,L-lactide、glycolide、caprolactone進行開環聚合反應,合成出mPEG-PLGA及mPEG-PLCL兩種兩團聯共聚物,將這兩種共聚物分別配製成水膠,比較其性質與包覆效果,以找出較適合包覆他克莫司之藥物載體。
合成所得的產物,透過核磁共振氫譜、凝膠滲透層析儀和傅立葉轉換紅外線光譜儀確認其化學結構和分子量,並針對水膠之溶膠相轉換作測試,以觀察各濃度之成膠溫度範圍,結果顯示15wt% mPEG-PLGA及18wt% mPEG-PLCL能夠在常溫為液態而在體溫狀態形成膠體。體外藥物釋放則是利用水膠包覆他克莫司,以高效能液相層析儀分析確認是否能夠有效包覆藥物並達到緩慢長效釋放。實驗結果顯示,藥物與mPEG-PLGA水膠溶液混合時會有析出的現象,而mPEG-PLCL能較良好的包覆藥物並維持穩定釋放長達三個月,因此mPEG-PLCL比mPEG-PLGA更適合作為包覆疏水性免疫抑制藥物他克莫司之藥物載體。
In this research, thermosensitive polyester hydrogels were used as drug carriers to encapsulate tacrolimus (FK506). It is expected that the drug release system will achieve a slow and sustained release effect. Two types of diblock copolymers, mPEG-PLGA and mPEG-PLCL, were synthesized by ring-opening polymerization, in which methoxy poly(ethylene glycol) was used as the initiator to react with different types of ester monomers: D,L-lactide, glycolide, and caprolactone. The two copolymers were formulated into hydrogels, and their properties and encapsulation efficiency were compared to find the most suitable drug carrier for tacrolimus.
The chemical structure and molecular weight of copolymers were confirmed by nuclear magnetic resonance spectroscopy, gel permeation chromatography and Fourier transform infrared spectroscopy. The sol-gel-sol phase transition of hydrogels showed that 15 wt% mPEG-PLGA and 18 wt% mPEG-PLCL have good sol-gel-sol behavior. Drug release experiment was performed using a high-performance liquid chromatography, in which the encapsulation efficiency and the capability of hydrogels to achieve sustained drug release can be characterized. The results showed that mPEG-PLCL was more suitable than mPEG-PLGA as a drug carrier for encapsulating tacrolimus.
1. Wichterle, O. and Lim, D. Hydrophilic gels for biological use. Nature, 1960. 185: 117-118.
2. Patel, A. and Mequanint, K. Hydrogel Biomaterials. Biomedical Engineering-Frontiers and Challenges, 2011: Intech.
3. Cascone, M.G., Sim, B. and Downes, S. Blends of Synthetic and Natural Polymers as Drug-Delivery Systems for Growth-Hormone. Biomaterials, 1995. 16(7): 569-574.
4. Hamidi, M., Azadi, A. and Rafiei, P. Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 2008. 60(15): 1638-1649.
5. Das, D. and Pal, S. Modified biopolymer-dextrin based crosslinkedhydrogels: application in controlled drug delivery. RSC Adv., 2015. 5: 25014-25050.
6. Hennink, W.E. and van Nostrum, C.F. Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 2012. 64: 223-236.
7. Simões, S., Figueiras, A. and Veiga, F. Modular Hydrogels for Drug Delivery. Biomaterials and Nanobiotechnology, 2012. 3: 185-199.
8. Almeida, H., Amaral, M.H. and Lobão, P. Temperature and pH stimuli-responsive polymers and their applications in controlled and selfregulated drug delivery. Journal of Applied Pharmaceutical Science, 2012: 01-10.
9. Hoare, T.R. and Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer, 2008. 49: 1993-2007.
10. Satish, C.S., Satish, K.P. and Shivakumar, H.G. Hydrogels as controlled drug delivery systems: Synthesis, crosslinking, water and drug transport mechanism. Indian J Pharm Sci, 2006. 68(2): 133-140.
11. Yu, L. and Ding, J.D. Injectable hydrogels as unique biomedical materials. Chemical Society Reviews, 2008. 37(8): 1473-1481.
12. Kim, M.S., Seo, K.S., Khang, G., Cho, S.H. and Lee, H.B. Preparation of methoxy poly(ethylene glycol)/polyester diblock copolymers and examination of the gel-to-sol transition. Journal of Polymer Science Part a-Polymer Chemistry, 2004. 42(22): 5784-5793.
13. Wang, W., Deng, L., Liu, S., Li, X., Zhao, X., Hu, R. Zhang, J., Han, H. and Dong, A. Adjustable degradation and drug release of a thermosensitive hydrogel based on a pendant cyclic ether modified poly(ε-caprolactone) and poly(ethylene glycol)co-polymer. Acta Biomaterialia, 2012. 8(11): 3963-3973.
14. Jeong, B., Bae, Y.H., Lee, D.S. and Kim, S.W. Biodegradable block copolymers as injectable drug-delivery systems. Nature, 1997: 860-862.
15. Jeong, B., Bae, Y.H., and Kim, S.W., In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. Biomedical Materials Research, 2000. 50: 171-177.
16. Chen, S. and Singh, J. Controlled delivery of testosterone from smart polymer solution based systems: In vitro evaluation. International Journal of Pharmaceutics, 2005. 295: 183-190.
17. Jeong, B., Bae, Y.H., and Kim, S.W. Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. Journal of Controlled Release, 2000. 63: 155-163.
18. Huang, L.Y. The Study of Polyester Temperature-Sensitive Hydrogel for Immunosuppressive Drug Delivery. Master Thesis, 2009, National Tsing Hua University: Taiwan.
19. Kim, M.S., Kim, S.K., Kim, S.H., Hyun, H., Khang, G. and Lee, H.B. In vivo osteogenic differentiation of rat bone marrow stromal cells in thermosensitive MPEG-PCL diblock copolymer gels. Tssiue Engineering, 2006. 10: 2863-2873.
20. Gusev, A.I., Khokhlov, A.R. and Govorun, E.N. Glossary of nanotechnology and related terms. 2009-2011.
21. Yu, L., Chang, G., Zhang, H. and Ding, J. Temperature-induced spontaneous sol–gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. Polymer science, 2007. 45: 1122-1133.
22. Ball, D., Hill, J. and Scott, R. The Basics of General, Organic, and Biological Chemistry. Organic Acids and Bases and Some of Their Derivatives. 2011.
23. Engineer, C., Parikh, J. and Raval, A. Review on Hydrolytic Degradation Behavior of Biodegradable Polymers from Controlled Drug Delivery System. Trends in Biomaterials & Artificial Organs, 2011. 25: 79-85.
24. Bajpai, A.K., Shukla, S.K., Bhanu, S. and Kankane, S. Responsive polymers in controlled drug delivery. Progress in Polymer Science, 2008. 33: 1088-1118.
25. Ghosh, S. Recent research and development in synthetic polymer-based drug delivery systems. Journal of Chemical Research, 2004. 2004: 241-246.
26. Jeong, B., Kim, S.W. and Bae, Y.H. Thermosensitive sol–gel reversible hydrogels. Advanced Drug Delivery Reviews, 2012. 64: 154-162.
27. Roche, N.A., Vermeersch, H.F., Stillaert, F.B., Peters, K.T., De Cubber, J., Van Lierde, K., Rogiers, X., Colenbie, L., Peeters, P.C., Lemmens, G.M.D. and Blondeel, P.N. Complex facial reconstruction by vascularized composite allotransplantation: The first Belgian case. Journal of Plastic Reconstructive and Aesthetic Surgery, 2015. 68(3): 362-371.
28. Murphy, B.D., Zuker, R.M. and Borschel, G.H. Vascularized composite allotransplantation: An update on medical and surgical progress and remaining challenges. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2013. 66(11): 1449-1455.
29. Alhefzi, M., Aycart, M.A., Bueno, E.M., Kiwanuka, H., Krezdorn, N., Pomahac, B. and Tullius, S.G. Treatment of Rejection in Vascularized Composite Allotransplantation. Current Transplantation Reports, 2016. 3: 404-409.
30. Sarhane, K.A., Tuffaha, S.H. and Broyles, J.M., Ibrahim, A.E., Khalifian, S., Baltodano, P., Santiago, G.F., Alrakan, M. and Ibrahim, Z. A Critical Analysis of Rejection in Vascularized Composite Allotransplantation: Clinical, Cellular and Molecular Aspects, Current Challenges, and Novel Concepts. Front Immunol, 2013. 4:406
31. Sehgal, V.N., Srivastava, G. and Dogra, S. Tacrolimus in dermatology-pharmacokinetics, mechanism of action, drug interactions, dosages, and side effects: part I. Skinmed, 2008: 27-30.
32. Thomson, A.W., Bonham, C.A. and Zeevi, A. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Therapeutic drug monitoring, 1995: 584-591.
33. Xu, W., Ling, P. and Zhang, T. Toward immunosuppressive effects on liver transplantation in rat model: Tacrolimus loaded poly(ethylene glycol)-poly(d,l-lactide) nanoparticle with longer survival time. International Journal of Pharmaceutics, 2014. 460: 173-180.
34. Lee, Y.M. Thermosensitive mPEG-PLGA hydrogels:Synthesis and effect of copolymer composition on the drug delivery system. Master Thesis, 2010, National Tsing Hua University: Taiwan.
35. Lee, Y.L. The study of thermosensitive mPEG-polyester hydrogels: Synthesis and characteristic of diblock copolymers with different composition of ester monomers on hydrogel system. Master Thesis, 2011, National Tsing Hua University: Taiwan.
36. Cheng, C.C. Thermosensitive Polypeptide Hydrogel for Immunosuppressive Drug Delivery in Vascularized Composite Allotransplantation. Master Thesis, 2017, National Tsing Hua University: Taiwan.
37. 黃舜煦. 檢驗醫學部臨床檢驗手冊. 2016.