簡易檢索 / 詳目顯示

研究生: 𡍼琇惠
Tu, Hsiu-Hui
論文名稱: 利用漩渦式超音波作為光導以增加散射介質中的光通量
Acoustic Vortex as Optical Waveguide to Increase the Efficiency of Light Penetration in Scattering Medium
指導教授: 葉秩光
Yeh, Chih-Kuang
口試委員: 李夢麟
Li, Meng-Lin
廖倫德
Liao, Lun-De
范景翔
Fan, Ching-Hsiang
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 70
中文關鍵詞: 超音波漩渦式超音波光導系統
外文關鍵詞: Ultrasound, Acoustic vortex, wave guide system
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自19世紀以來,光學已廣泛應用於生醫領域上,然而,由於光束於組織中傳遞時會因為吸收、散射等作用,造成光束能量衰減,進而使應用受到限制,例如成像方面降低影像解析度,治療方面降低治療效率等。雖然,近年來已開發出許多增加光通量之方法,然而在應用上仍具有障礙,例如最常見的組織光學清除技術,藉由光學浸漬透明劑浸漬樣品漸少樣品中的散射子可大幅增加光束穿透效率,然而大多數透明劑皆具有毒性且浸漬過程耗時,樣品也具有不可恢復性的問題,而非侵入式的光源波前調變技術,利用分析散射光場的回饋訊號,找尋最佳的行徑路徑以調整入射光之相位,使發射後達到重新聚焦的效果以增加光通量,然而在相關儀器上便需使用較高性能的光學模塊以分析光場訊號且分析過程複雜。為改善現今技術的障礙,本研究提出一種新的技術,利用1.1 MHz之陣列式海扶探頭施打漩渦式超音波(Vortex)作為光導,以增加光束於散射介質中的光通量。結果部分,首先表明利用Vortex作為光導可提高15.4 %±1.0 %之光通量,反之,利用一般聚焦式超音波(Inphase)則會使光通量衰減19.1 %±2.0 %,此結果證明以Vortex作為光導具可行性。再者,在施打不同聲壓(1.58~12.99 MPa)下,光通量的變化幅度與施打聲壓具有正相關性,即施打聲壓越高,光通量變化幅度亦越高。進一步利用不同散射子濃度(0.5 %、1.0 %)、不同厚度(5 mm、8 mm、10 mm)之仿體模擬不同環境,結果顯示,光通量在使用Vortex下皆有相對提升,表明以Vortex作為光導具廣泛應用性。最後,本研究使用小鼠腦切片組織進行實驗,在光通量上亦有8.8 %±1.6 %的提升,證明以Vortex作為光導應用於實際組織中具可行性。此外,本研究也發現原有的超音波光導機制具有問題,在超音波不可能對介質產生折射率變化的狀態下,光通量仍有提升的效果,而使用傳統光學理論計算及蒙地卡羅模擬進行雙重驗證,皆說明實驗所使用聲壓對折射率所造成的變化並不足以改變光束行進狀態。因此,本研究進一步提出利用兩種概念以解釋超音波光導增加光通量之機制,第一種為超音波誘導氣泡產生,並根據Vortex的結構,形成環型氣泡通道,利用氣泡改變介質散射係數進而影響光束行進狀態,將光束侷限於中心空軸處傳遞。第二種為利用Vortex具有旋轉角動量的特性,使光束與聲場作用時產生超輻射散射,而增加了光束之能量。雖然超音波光導的作用機制仍未有定論,本研究亦證明利用漩渦式超音波光導可建立一無毒性、無侵入性、具恢復性且架構簡單之系統,以改善散射介質中的光通量。

    關鍵字: 超音波、漩渦式超音波、光導系統


    Since the 19th century, optical techniques have been widely used in the biomedical fields. However, due to the absorption and scattering limit the penetration depth of light in tissue which limits the application, such as the reduction of image resolution, the less efficient of treatment and so on. Although many methods have been developed to overcome this obstacle, there are still have many problems in the application. For example, in optical clearing technique, most chemical agents are toxic and the process is time-consuming, and the sample is non-reversible, rather than non-invasive wavefront shaping technique, also need higher-performance optical modules the analyze the light scattering pattern. In this study, we propose a strategy by using Vortex to be as an optical waveguide to increase the penetration of light. The experiments were conducted by a 1.1 MHz array transducer to produce Vortex. The results firstly show that using Vortex to be as waveguide, the fluence increase 15.4 %±1.0 %. On the contrary, using Inphase to be as waveguide, the fluence decrease 19.1 %±2.0 %. This result proof the feasibility of using vortex to be as waveguide. Furthermore, by using different acoustic pressure (1.58~12.99 MPa), we found that the gain of the fluence has a positive correlation with the acoustic pressure. The higher acoustic pressure can cause the higher increase of fluence. Also, the fluence can be increased at different concentrations (0.5 %、1.0 %) and different thicknesses (5 mm、8 mm、10 mm) of intralipid phantom. This result shows that vortex can be used to increase fluence in any kinds of medium. Finally, we use mouse brain slices to conduct in vitro experiment, and the result shows that the fluence increase 8.8 %±1.6 %, proving that this waveguide system can be applied to actual tissues. In addition, we found that the original theory of ultrasonic waveguide has problems. When the tissue placed far away from the ultrasound focus point, the fluence still can be increased, which means that the increase of fluence does not due to the refractive index mismatch. Therefore, we further propose to use two possibilities to explain the mechanism of the vortex ultrasonic light guide to increase the fluence. The first one is using Vortex to induce bubbles and form a ring-shaped bubble tube. Using bubbles to change the scattering coefficient of the medium thus influence the light penetrate and trap the light at the null core of Vortex. The second one is that Vortex has the angular momentum of rotation to cause superradiation scattering, thus increase the energy of the light. Although the mechanism of using vortex to be as waveguide is still inconclusive, this study still demonstrates a non-toxic, non-invasive, recoverable, and simple setup system to improve the efficiency of light beam delivery in the medium.

    Keywords:Ultrasound、Acoustic vortex、wave guide system

    目錄 摘要 i Abstract iii 誌謝 v 目錄 vi 圖目錄 ix 表目錄 xi 第1章 緒論 1 1.1 光學在生醫領域上的應用與困境 1 1.1.1 生醫光學應用 1 1.1.2 光學應用於生物組織之困境 2 1.2 現今增加光通量之方法種類及困境 5 1.2.1 組織光學清除技術 (Optical clearing technique) 5 1.2.2 光源波前調變技術 (Wavefront shaping technique) 6 1.2.3 超音波誘導氣泡產生致聚光技術 (Air bubbles focusing light technique) 7 1.2.4 駐波式超音波光導技術 (Ultrasonic standing wave lightguide technique) 8 1.2.5 漩渦式瞬態微透鏡技術 (Vortex-assisted transient microlenses technique) 9 1.2.6 現今增加光通量方法之困境 11 1.3 研究目的與內容 13 1.3.1 漩渦式超音波(Acoustic vortex) 13 1.3.2 研究目的與內容 14 第2章 實驗材料與方法 16 2.1 緒論 16 2.2 超音波光導實驗之相關硬體設備 16 2.2.1 Verasonics Vantage 128TM超音波研究系統 16 2.2.2 三維高能量聚焦式超音波探頭 17 2.3 超音波參數模擬與量測 19 2.3.1 發射波型設計 19 2.3.1.1 聚焦式波型設計 19 2.3.1.2 漩渦式波型設計 19 2.3.2 超音波聲場模擬與量測 20 2.3.2.1 超音波聲場模擬方法 20 2.3.2.2 超音波聲場量測方法 21 2.3.3 超音波探頭聲壓量測 22 2.4 仿體製備 23 2.5 超音波光導實驗系統架構 24 2.5.1 漩渦式超音波光導之仿體實驗 24 2.5.2 漩渦式超音波光導之生物組織實驗 27 2.6 蒙地卡羅模擬 28 2.6.1 蒙地卡羅模擬原理及流程 28 2.6.2 折射率差異機制之蒙地卡羅模擬模型建立 29 2.6.2.1 對照組模擬模型 30 2.6.2.2 各式光導結構模擬模型 31 2.6.2.3 模擬數值分析 32 2.6.3 氣泡通道機制之蒙地卡羅模擬模型建立 33 2.6.3.1 各式氣泡通道結構模型建立 33 2.6.3.2 模擬數值分析 34 2.7 統計分析 34 第3章 實驗結果與討論 35 3.1 超音波參數模擬與量測結果 35 3.1.1 聚焦式超音波波型( Inphase ) 35 3.1.2 漩渦式超音波波型( Vortex ) 36 3.2 漩渦式超音波光導對光通量增益差異之實驗 38 3.2.1 超音波不同發射波型形成之光導對光通量增益之差異 38 3.2.2 超音波不同發射聲壓對光通量增益之差異 39 3.2.3 仿體不同濃度對光通量增益之差異 40 3.2.4 仿體不同厚度對光通量增益之差異 41 3.2.5 光通量增益變化與聲場橫向強度分布之關係 42 3.2.6 入射光不同束寬對光通量增益之差異 43 3.2.7 仿體不同放置位置對光通量增益之差異 44 3.3 漩渦式超音波光導對生物組織之光通量增益測試 46 3.3.1 光通量增益變化之可行性測試 46 3.3.2 光通量增益變化與聲場橫向強度分布之關係 47 3.4 超音波光導作用機制之探討 48 3.4.1 傳統光學之理論計算 48 3.4.2 蒙地卡羅模擬分析 49 3.4.2.1 駐波式超音波光導對光通量增益之模擬與文獻探討 49 3.4.2.2 聚焦式超音波對光通量增益之模擬 50 3.4.2.3 漩渦式超音波光導對光通量增益之模擬 51 3.4.3 漩渦式超音波光導作用機制之探討 53 3.4.3.1 漩渦式超音波致氣泡牆形成之概念 53 3.4.3.2 漩渦式超音波致氣泡牆形成之蒙地卡羅模擬 54 3.4.3.3 漩渦式超音波致超輻射散射之概念 57 第4章 結論與未來展望 59 4.1 結論 59 4.2 未來應用與發展 61 參考文獻 62

    [1] ‘Phototherapy: (1) the Chemical Rays of Light and Small-pox, (2) Light as a ... - Niels Ryberg Finsen - Google 圖書’. https://books.google.com.tw/books?hl=zh-TW&lr=&id=Ou40AQAAMAAJ&oi=fnd&pg=PA15&dq=textsPhototherapy:+(1)+the+chemical+rays+of+light+and+small-pox,+(2)+light+as+a+stimulant,+(3)+the+treatment+of+lupus+vulgaris+by+concentrated+chemical+rays&ots=Pdv8vSOilQ&sig=1ccpit4LiGq84XMvUmVm8z8YtAM&redir_esc=y#v=onepage&q&f=false (accessed May 23, 2022).
    [2] ‘Einführung in die Methoden der Dioptrik des Auges des Menschen - Allvar Gullstrand - Google 圖書’. https://books.google.com.tw/books?hl=zh-TW&lr=&id=5MYvAQAAMAAJ&oi=fnd&pg=PA1&dq=Allvar+Gullstrand&ots=d5VcoEYJf-&sig=_O_viYXU3l98M8slucFyvqI89KI&redir_esc=y#v=onepage&q=Allvar%20Gullstrand&f=false (accessed May 23, 2022).
    [3] S. H. Yun and S. J. J. Kwok, ‘Light in diagnosis, therapy and surgery’, Nature Biomedical Engineering, vol. 1, no. 1. Nature Publishing Group, Jan. 10, 2017. doi: 10.1038/s41551-016-0008.
    [4] X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, ‘Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods’, J Am Chem Soc, vol. 128, no. 6, pp. 2115–2120, Feb. 2006, doi: 10.1021/ja057254a.
    [5] X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, ‘Plasmonic photothermal therapy (PPTT) using gold nanoparticles’, Lasers in Medical Science, vol. 23, no. 3. pp. 217–228, Jul. 2008. doi: 10.1007/s10103-007-0470-x.
    [6] Y. Liu, P. Bhattarai, Z. Dai, and X. Chen, ‘Photothermal therapy and photoacoustic imaging: Via nanotheranostics in fighting cancer’, Chemical Society Reviews, vol. 48, no. 7. Royal Society of Chemistry, pp. 2053–2108, Apr. 07, 2019. doi: 10.1039/c8cs00618k.
    [7] T. J. Dougherty et al., ‘REVIEW Photodynamic Therapy’, 1998. [Online]. Available: https://academic.oup.com/jnci/article/90/12/889/960771
    [8] P. Agostinis et al., ‘Photodynamic therapy of cancer: An update’, CA Cancer J Clin, vol. 61, no. 4, pp. 250–281, Jul. 2011, doi: 10.3322/caac.20114.
    [9] S. Thomsen, ‘PATHOLOGIC ANALYSIS OF PHOTOTHERMAL AND INTERACTIONS’, 1991.
    [10] G. Paltauf and P. E. Dyer, ‘Photomechanical processes and effects in ablation’, Chemical Reviews, vol. 103, no. 2. pp. 487–518, Feb. 2003. doi: 10.1021/cr010436c.
    [11] F. A. McDonald and G. C. Wetsel, ‘Generalized theory of the photoacoustic effect’, J Appl Phys, vol. 49, no. 4, pp. 2313–2322, 1978, doi: 10.1063/1.325116.
    [12] M. Xu and L. v. Wang, ‘Photoacoustic imaging in biomedicine’, Review of Scientific Instruments, vol. 77, no. 4. 2006. doi: 10.1063/1.2195024.
    [13] L. v. Wang and J. Yao, ‘A practical guide to photoacoustic tomography in the life sciences’, Nature Methods, vol. 13, no. 8. Nature Publishing Group, pp. 627–638, Jul. 28, 2016. doi: 10.1038/nmeth.3925.
    [14] R. C. Reddick, R. J. Warmack, and T. L. Ferrell, ‘New form of scanning optical microscopy’, 1989.
    [15] R. H. Webb, ‘Confocal optical microscopy’, 1996.
    [16] M. W. Davidson and M. Abramowitz, ‘OPTICAL MICROSCOPY’. [Online]. Available: http://microscopy.fsu.edu
    [17] C. Krafft and V. Sergo, ‘Biomedical applications of Raman and infrared spectroscopy to diagnose tissues’, IOS Press, 2006.
    [18] N. N. Boustany, S. A. Boppart, and V. Backman, ‘Microscopic imaging and spectroscopy with scattered light’, Annual Review of Biomedical Engineering, vol. 12. pp. 285–314, Aug. 15, 2010. doi: 10.1146/annurev-bioeng-061008-124811.
    [19] M. R. Eftink and C. A. Ghiron, ‘REVIEW Fluorescence Quenching Studies with Proteins’, 1981.
    [20] P. Kask, K. Palo, D. Ullmann, and K. Gall, ‘Fluorescence-intensity distribution analysis and its application in biomolecular detection technology’. [Online]. Available: www.pnas.org
    [21] S. Parker, ‘Verifiable CPD paper: Laser-tissue interaction’, Br Dent J, vol. 202, no. 2, pp. 73–81, Jan. 2007, doi: 10.1038/bdj.2007.24.
    [22] R. Steiner, ‘Laser-tissue interactions’, in Laser and IPL Technology in Dermatology and Aesthetic Medicine, Springer Berlin Heidelberg, 2011, pp. 23–36. doi: 10.1007/978-3-642-03438-1_2.
    [23] V. Ntziachristos, ‘Going deeper than microscopy: The optical imaging frontier in biology’, Nature Methods, vol. 7, no. 8. Nature Publishing Group, pp. 603–614, 2010. doi: 10.1038/nmeth.1483.
    [24] V. v Tuchin, ‘5. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis’, SPIE Press, 2015.
    [25] C. Ash, M. Dubec, K. Donne, and T. Bashford, ‘Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods’, Lasers Med Sci, vol. 32, no. 8, pp. 1909–1918, Nov. 2017, doi: 10.1007/s10103-017-2317-4.
    [26] K. , S. T. , L. K. , & J. B. Kwon, ‘Enhancement of light propagation depth in skin: Cross-validation of mathematical modeling methods. Lasers in Medical Science’, Lasers Med Sci, vol. 24, no. 4, 2009.
    [27] Y. Chu et al., ‘Second Near-Infrared Photothermal Therapy with Superior Penetrability through Skin Tissues’, CCS Chemistry, pp. 3289–3300, Nov. 2021, doi: 10.31635/ccschem.021.202101539.
    [28] S. Kang et al., ‘High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering’, Nat Commun, vol. 8, no. 1, Dec. 2017, doi: 10.1038/s41467-017-02117-8.
    [29] S. Yoon et al., ‘Deep optical imaging within complex scattering media’, Nature Reviews Physics, vol. 2, no. 3. Springer Nature, pp. 141–158, Mar. 01, 2020. doi: 10.1038/s42254-019-0143-2.
    [30] D. Zhu, K. v. Larin, Q. Luo, and V. v. Tuchin, ‘Recent progress in tissue optical clearing’, Laser Photon Rev, vol. 7, no. 5, pp. 732–757, Sep. 2013, doi: 10.1002/lpor.201200056.
    [31] E. A. Genina, A. N. Bashkatov, and V. v. Tuchin, ‘Tissue optical immersion clearing’, Expert Review of Medical Devices, vol. 7, no. 6. pp. 825–842, Nov. 2010. doi: 10.1586/erd.10.50.
    [32] X. Weny, Z. Maoy, Z. Han, V. v. Tuchin, and D. Zhu, ‘In vivo skin optical clearing by glycerol solutions: Mechanism’, J Biophotonics, vol. 3, no. 1–2, pp. 44–52, 2010, doi: 10.1002/jbio.200910080.
    [33] Z. Mao, Z. Han, X. Wen, Q. Luo, and D. Zhu, ‘Influence of glycerol with different concentrations on skin optical clearing and morphological changes in vivo’, in Photonics and Optoelectronics Meetings (POEM) 2008: Fiber Optic Communication and Sensors, Dec. 2008, vol. 7278, p. 72781T. doi: 10.1117/12.823310.
    [34] A. K. Bui et al., ‘Revisiting optical clearing with dimethyl sulfoxide DMSO’, Lasers Surg Med, vol. 41, no. 2, pp. 142–148, 2009, doi: 10.1002/lsm.20742.
    [35] Z. Zhi, Z. Han, Q. Luo, and D. Zhu, ‘IMPROVE OPTICAL CLEARING OF SKIN IN VITRO WITH PROPYLENE GLYCOL AS A PENETRATION ENHANCER’, 2009. [Online]. Available: www.worldscientific.com
    [36] Д. К. Тучина, В. Д. Генин, А. Н. Башкатов, Э. А. Генина, and В. В. Тучин, ‘ ОПТИЧЕСКОЕ ПРОСВЕТЛЕНИЕ ТКАНЕЙ КОЖИ EX VIVO ПОД ДЕЙСТВИЕМ ПОЛИЭТИЛЕНГЛИКОЛЯ ’, Оптика и спектроскопия, vol. 120, no. 1, pp. 36–45, 2016, doi: 10.7868/s0030403416010220.
    [37] C. Drew, T. E. Milner, and C. G. Rylander, ‘Mechanical tissue optical clearing devices: evaluation of enhanced light penetration in skin using optical coherence tomography’, J Biomed Opt, vol. 14, no. 6, p. 064019, 2009, doi: 10.1117/1.3268441.
    [38] J. Yoon, D. Park, T. Son, J. Seo, J. S. Nelson, and B. Jung, ‘A physical method to enhance transdermal delivery of a tissue optical clearing agent: Combination of microneedling and sonophoresis’, Lasers Surg Med, vol. 42, no. 5, pp. 412–417, Jul. 2010, doi: 10.1002/lsm.20930.
    [39] A. Izquierdo-Román, W. C. Vogt, L. Hyacinth, and C. G. Rylander, ‘Mechanical tissue optical clearing technique increases imaging resolution and contrast through Ex vivo porcine skin’, Lasers Surg Med, vol. 43, no. 8, pp. 814–823, Sep. 2011, doi: 10.1002/lsm.21105.
    [40] J. Qiu, J. Neev, T. Wang, and T. E. Milner, ‘Deep Subsurface cavities in skin utilizing mechanical optical clearing and femtosecond laser ablation’, Lasers Surg Med, vol. 45, no. 6, pp. 383–390, Aug. 2013, doi: 10.1002/lsm.22150.
    [41] E. Lee, H. J. Kim, and W. Sun, ‘See-through technology for biological tissue: 3-dimensional visualization of macromolecules’, International Neurourology Journal, vol. 20. Korean Continence Society, pp. S15–S22, May 01, 2016. doi: 10.5213/inj.1632630.315.
    [42] I. M. Vellekoop and A. P. Mosk, ‘Focusing coherent light through opaque strongly scattering media’, 2007.
    [43] H. Yu et al., ‘Recent advances in wavefront shaping techniques for biomedical applications’, Current Applied Physics, vol. 15, no. 5. Elsevier, pp. 632–641, 2015. doi: 10.1016/j.cap.2015.02.015.
    [44] I. M. Vellekoop, ‘Feedback-based wavefront shaping’, Opt Express, vol. 23, no. 9, p. 12189, May 2015, doi: 10.1364/oe.23.012189.
    [45] I. M. Vellekoop et al., ‘Multiple scattering; (290.1990) Diffusion; (030.6600) Statistical Optics References and links 1’, 2006. [Online]. Available: http://cops.tnw.utwente.nl
    [46] I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, ‘Exploiting disorder for perfect focusing’, Nat Photonics, vol. 4, no. 5, pp. 320–322, 2010, doi: 10.1038/nphoton.2010.3.
    [47] X. L. Deán-Ben, H. Estrada, A. Ozbek, and D. Razansky, ‘Influence of the absorber dimensions on wavefront shaping based on volumetric optoacoustic feedback’, Opt Lett, vol. 40, no. 22, p. 5395, Nov. 2015, doi: 10.1364/ol.40.005395.
    [48] R. Horstmeyer, H. Ruan, and C. Yang, ‘Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue’, Nat Photonics, vol. 9, no. 9, pp. 563–571, Sep. 2015, doi: 10.1038/nphoton.2015.140.
    [49] P. Lai, L. Wang, J. W. Tay, and L. v. Wang, ‘Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media’, Nat Photonics, vol. 9, no. 2, pp. 126–132, Feb. 2015, doi: 10.1038/nphoton.2014.322.
    [50] R. Gao, Z. Xu, L. Song, and C. Liu, ‘Breaking Acoustic Limit of Optical Focusing Using Photoacoustic-Guided Wavefront Shaping’, Laser and Photonics Reviews, vol. 15, no. 8. John Wiley and Sons Inc, Aug. 01, 2021. doi: 10.1002/lpor.202000594.
    [51] G. Yao and L. v Wang, ‘Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue’, 2000.
    [52] Y. Xu, L. Zhang, S. Gao, P. Lu, S. Mihailov, and X. Bao, ‘Highly sensitive fiber random-grating-based random laser sensor for ultrasound detection’, Opt Lett, vol. 42, no. 7, p. 1353, Apr. 2017, doi: 10.1364/ol.42.001353.
    [53] L. Jia et al., ‘Characterization of pulsed ultrasound using optical detection in Raman-Nath regime’, Review of Scientific Instruments, vol. 89, no. 8, Aug. 2018, doi: 10.1063/1.5024882.
    [54] H. Kim and J. H. Chang, ‘Increased light penetration due to ultrasound-induced air bubbles in optical scattering media’, Sci Rep, vol. 7, no. 1, Dec. 2017, doi: 10.1038/s41598-017-16444-9.
    [55] Z. H. Hsieh, C. H. Fan, M. L. Li, and C. K. Yeh, ‘Ultrasound-guided system for light focusing using microbubbles generated from polytetrafluoroethylene nanoparticles’, Appl Phys Lett, vol. 120, no. 5, Jan. 2022, doi: 10.1063/5.0080750.
    [56] H. Kim et al., ‘Deep laser microscopy using optical clearing by ultrasound-induced gas bubbles’, Nat Photonics, Nov. 2022, doi: 10.1038/s41566-022-01068-x.
    [57] D. Burnett, ‘The Relation between Refractive Index and Density’, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 23, no. 8, pp. 907–911, 1927, doi: 10.1017/S0305004100013773.
    [58] S. Wiederseiner, N. Andreini, G. Epely-Chauvin, and C. Ancey, ‘Refractive-index and density matching in concentrated particle suspensions: A review’, Experiments in Fluids, vol. 50, no. 5. pp. 1183–1206, May 2011. doi: 10.1007/s00348-010-0996-8.
    [59] M. G. Scopelliti and M. Chamanzar, ‘Ultrasonically sculpted virtual relay lens for in situ microimaging’, Light Sci Appl, vol. 8, no. 1, Dec. 2019, doi: 10.1038/s41377-019-0173-7.
    [60] M. Chamanzar et al., ‘Ultrasonic sculpting of virtual optical waveguides in tissue’, Nat Commun, vol. 10, no. 1, Dec. 2019, doi: 10.1038/s41467-018-07856-w.
    [61] A. Ishijima, U. Yagyu, K. Kitamura, A. Tsukamoto, I. Sakuma, and K. Nakagawa, ‘Nonlinear photoacoustic waves for light guiding to deep tissue sites’, Opt Lett, vol. 44, no. 12, p. 3006, Jun. 2019, doi: 10.1364/ol.44.003006.
    [62] P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, ‘Refractive index of water and steam as function of wavelength, temperature and density’, J Phys Chem Ref Data, vol. 19, no. 3, pp. 677–717, 1990, doi: 10.1063/1.555859.
    [63] J. Liu et al., ‘Physica Scripta Refractive Index Measurement and its Applications You may also like High-resolution Measurement of Refractive Index Based on Resonant Tunneling Effect Accuracy design of ultra-low residual reflection coatings for laser optics Effective spectral dispersion of refractive index modulation Refractive Index Measurement and its Applications’.
    [64] ‘Nonlinear Optics - Robert W. Boyd - Google Books’. https://books.google.com.tw/books?hl=en&lr=&id=54vZDwAAQBAJ&oi=fnd&pg=PP1&ots=KEyCdDv2BD&sig=xFq7kdBVqV3lZOJ8tzDbkoPNOjg&redir_esc=y#v=onepage&q&f=false (accessed Aug. 30, 2022).
    [65] E. Edrei and G. Scarcelli, ‘Optical Focusing beyond the Diffraction Limit via Vortex-Assisted Transient Microlenses’, ACS Photonics, vol. 7, no. 4, pp. 914–918, Apr. 2020, doi: 10.1021/acsphotonics.0c00109.
    [66] P. S. Yarmolenko et al., ‘Thresholds for thermal damage to normal tissues: An update’, International Journal of Hyperthermia, vol. 27, no. 4. pp. 320–343, Jun. 2011. doi: 10.3109/02656736.2010.534527.
    [67] S. T. Kang and C. K. Yeh, ‘Potential-well model in acoustic tweezers’, IEEE Trans Ultrason Ferroelectr Freq Control, vol. 57, no. 6, pp. 1451–1459, Jun. 2010, doi: 10.1109/TUFFC.2010.1564.
    [68] L. Yang, Q. Ma, J. Tu, and D. Zhang, ‘Phase-coded approach for controllable generation of acoustical vortices’, J Appl Phys, vol. 113, no. 15, Apr. 2013, doi: 10.1063/1.4801894.
    [69] M. Baudoin, J.-C. Gerbedoen, A. Riaud, O. Bou Matar, N. Smagin, and J.-L. Thomas, ‘Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers’, 2019. [Online]. Available: http://advances.sciencemag.org/
    [70] P. Vaity and L. Rusch, ‘Perfect vortex beam: Fourier transformation of a Bessel beam’, Opt Lett, vol. 40, no. 4, p. 597, Feb. 2015, doi: 10.1364/ol.40.000597.
    [71] W.-C. Lo, C.-H. Fan, Y.-J. Ho, C.-W. Lin, and C.-K. Yeh, ‘Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles’, doi: 10.1073/pnas.2023188118/-/DCSupplemental.
    [72] J. Li et al., ‘Three dimensional acoustic tweezers with vortex streaming’, Commun Phys, vol. 4, no. 1, Dec. 2021, doi: 10.1038/s42005-021-00617-0.
    [73] D. Baresch and V. Garbin, ‘Acoustic trapping of microbubbles in complex environments and controlled payload release’, doi: 10.1073/pnas.2003569117/-/DCSupplemental.y.
    [74] S. Guo, Z. Ya, P. Wu, L. Zhang, and M. Wan, ‘Enhanced Sonothrombolysis Induced by High-Intensity Focused Acoustic Vortex’, Ultrasound Med Biol, vol. 48, no. 9, pp. 1907–1917, Sep. 2022, doi: 10.1016/j.ultrasmedbio.2022.05.021.
    [75] D. Chen, J. F. Kelly, and R. J. Mcgough, ‘A fast near-field method for calculations of time-harmonic and transient pressures produced by triangular pistons’.
    [76] R. M. Waxler and C. E. Weir, ‘Effect of Pressure and Temperature on the Refractive Indices of Benzene, Carbon Tetrachloride, and Water’.
    [77] S. L. Jacques, ‘Erratum: Optical properties of biological tissues: A review (Physics in Medicine and Biology (2013) 58)’, Physics in Medicine and Biology, vol. 58, no. 14. pp. 5007–5008, Jul. 21, 2013. doi: 10.1088/0031-9155/58/14/5007.
    [78] W.-F. Cheong, S. A. Prahl, and A. J. Welch, ‘A Review of the Optical Properties of Biological Tissues’, 1990.
    [79] J. Lubbers and R. Graaff, ‘A SIMPLE AND ACCURATE FORMULA FOR THE SOUND VELOCITY IN WATER’, 1998.
    [80] T. Li, C. Xue, P. Wang, Y. Li, and L. Wu, ‘Photon penetration depth in human brain for light stimulation and treatment: A realistic Monte Carlo simulation study’, J Innov Opt Health Sci, vol. 10, no. 5, Sep. 2017, doi: 10.1142/S1793545817430027.
    [81] G. Yona, N. Meitav, I. Kahn, and S. Shoham, ‘Realistic numerical and analytical modeling of light scattering in brain tissue for optogenetic applications’, eNeuro, vol. 3, no. 1, pp. 420–424, 2016, doi: 10.1523/ENEURO.0059-15.2015.
    [82] C. Zhu and Q. Liu, ‘Review of Monte Carlo modeling of light transport in tissues’, J Biomed Opt, vol. 18, no. 5, p. 050902, May 2013, doi: 10.1117/1.jbo.18.5.050902.
    [83] V. Periyasamy and M. Pramanik, ‘Advances in Monte Carlo Simulation for Light Propagation in Tissue’, IEEE Reviews in Biomedical Engineering, vol. 10. Institute of Electrical and Electronics Engineers, pp. 122–135, Aug. 13, 2017. doi: 10.1109/RBME.2017.2739801.
    [84] K. Huda, K. F. Swan, C. T. Gambala, G. C. Pridjian, and C. L. Bayer, ‘Towards Transabdominal Functional Photoacoustic Imaging of the Placenta: Improvement in Imaging Depth Through Optimization of Light Delivery’, Ann Biomed Eng, vol. 49, no. 8, pp. 1861–1873, Aug. 2021, doi: 10.1007/s10439-021-02777-0.
    [85] M. Mcshane, ‘IMPROVING MONTE CARLO PROGRAM FOR LIGHT TRANSPORT IN TISSUE’, 2015.
    [86] L. Wang, S. Ren, and X. Chen, ‘Comparative evaluations of the Monte Carlo-based light propagation simulation packages for optical imaging’, J Innov Opt Health Sci, vol. 11, no. 1, Jan. 2018, doi: 10.1142/S1793545817500171.
    [87] Q. Fang et al., ‘Light Propagation Through Tissue; (170.5280) Photon Migration; (170.7050) Tomography’, SPIE Press Monograph, 1993. [Online]. Available: http://www.math.sci.hiroshima-u.ac.jp/~m-
    [88] ‘ignore absorb’.
    [89] S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, ‘Lasers in Surgery and Medicine 12516519 (1992) and Rotterdam Radio-Therapeutic Institute, 3008 AE Rotterdam’.
    [90] M. Chamanzar et al., ‘Ultrasonic sculpting of virtual optical waveguides in tissue’, Nat Commun, vol. 10, no. 1, Dec. 2019, doi: 10.1038/s41467-018-07856-w.
    [91] N. Yamamura, E. Okada, K. Nakagawa, and S. Takagi, ‘Monte Carlo simulation of photon transport in a scattering-dominated medium with a refractive index gradient for acoustic light-guiding’, Optics Continuum, vol. 1, no. 4, p. 846, Apr. 2022, doi: 10.1364/OPTCON.453564.
    [92] C. Ash, M. Dubec, K. Donne, and T. Bashford, ‘Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods’, Lasers Med Sci, vol. 32, no. 8, pp. 1909–1918, Nov. 2017, doi: 10.1007/s10103-017-2317-4.
    [93] A. A. Atchley, L. A. Frizzell, R. E. Apfel, C. K. Holland, S. Madanshetty, and R. A. Roy, ‘Thresholds for cavitation produced in water by pulsed ultrasound’.
    [94] A. Brotchie, F. Grieser, and M. Ashokkumar, ‘Effect of power and frequency on bubble-size distributions in acoustic cavitation’, Phys Rev Lett, vol. 102, no. 8, Feb. 2009, doi: 10.1103/PhysRevLett.102.084302.
    [95] T. S. Leung, J. E. Honeysett, E. Stride, and J. Deng, ‘Light propagation in a turbid medium with insonified microbubbles’, J Biomed Opt, vol. 18, no. 1, p. 015002, Jan. 2013, doi: 10.1117/1.jbo.18.1.015002.
    [96] H. Assadi, R. Karshafian, and A. Douplik, ‘Optical scattering properties of intralipid phantom in presence of encapsulated microbubbles’, International Journal of Photoenergy, vol. 2014, 2014, doi: 10.1155/2014/471764.
    [97] R. E. Apfel and C. K. Holland, ‘OOriginal Contribution GAUGING THE LIKELIHOOD OF CAVITATION FROM SHORT-PULSE, LOW-DUTY CYCLE DIAGNOSTIC ULTRASOUND’, 1991.
    [98] M. G. Moore and P. Meystre, ‘Theory of Superradiant Scattering of Laser Light from Bose-Einstein Condensates’, 1999.
    [99] M. Richartz, S. Weinfurtner, A. J. Penner, and W. G. Unruh, ‘Generalized superradiant scattering’, Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 80, no. 12, Dec. 2009, doi: 10.1103/PhysRevD.80.124016.
    [100] F. Judt, S. Chen, and S. S. Chen, ‘Rapid Intensification in Tropical Cyclones: Understanding Physical Processes and Forecast Uncertainly Using High-resolution Stochastic Ensembles Evaluating Tropical Cyclones Simulated by a Global Convection Permitting Model View project Observing technology development View project 14D.9 Rapid Intensification in Tropical Cyclones: Understanding Predictability and Forecast Uncertainly Using High-¬resolution Stochastic Ensembles’, 2014. [Online]. Available: https://www.researchgate.net/publication/280883033
    [101] J. L. Thomas and R. Marchiano, ‘Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices’, Phys Rev Lett, vol. 91, no. 24, 2003, doi: 10.1103/PhysRevLett.91.244302.
    [102] T. Torres, A. Coutant, S. Dolan, and S. Weinfurtner, ‘Waves on a vortex: Rays, rings and resonances’, J Fluid Mech, vol. 857, pp. 291–311, Dec. 2018, doi: 10.1017/jfm.2018.752.
    [103] T. Torres, S. Patrick, A. Coutant, M. Richartz, E. W. Tedford, and S. Weinfurtner, ‘Rotational superradiant scattering in a vortex flow’, Nat Phys, vol. 13, no. 9, pp. 833–836, Sep. 2017, doi: 10.1038/nphys4151.

    QR CODE