研究生: |
陳旼暉 Min-Huei Chen |
---|---|
論文名稱: |
壓印製程應用於金屬/高分子雙層奈米結構之研究 A Study of Imprinting Process for the Fabrication of Metal/Polymer Bi-layer Nanostructures |
指導教授: |
宋震國
Cheng-Kuo Sung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 基材效應 、雙層材料結構 、差排理論 、堆積 、陷入 |
外文關鍵詞: | Substrate effect, Double-layer structure, Dislocation theory, Pile-up, Sink-in |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在以往以矽或玻璃為基材之金屬壓印中,發現基材效應造成成型力量變大,模具容易損壞,因此本論文利用硬薄膜/軟基材之構想,使用PMMA為基材,取代之前軟薄膜/硬基材系統,對鋁薄膜進行壓印實驗。藉由奈米壓痕實驗比較矽與PMMA基材對鋁薄膜機械性質之影響,而後壓印實驗以成型高度做為判斷鋁薄膜成型品質之依據,進一步對照壓痕結果,了解不同基材效應影響下鋁薄膜機械性質與成型高度之間的關係,並利用FIB與SEM分析壓痕截面,了解軟硬基材之基材效應對薄膜塑性變形影響之機制。
由各項實驗結果可以得到以下結論:鋁薄膜在矽基材上,因塑性變形只發生在鋁薄膜內,薄膜內差排堆積嚴重,硬度值隨壓深增加而升高,且有pile-up現象;在PMMA基材上,因為PMMA先產生降伏,所以硬度隨壓深增加而降低,且有sink-in現象。壓印結果發現,鋁薄膜在PMMA基材上成型高度的確比在矽基材上高出許多,兩種基材之薄膜在填充模穴後的表面形貌也符合鋁薄膜/PMMA基材填充率較高的結果,並可以了解鋁薄膜/PMMA基材之塑性成型由基材主導,此結果也可解釋PMMA填充進模穴造成鋁薄膜劇烈彎曲破裂;鋁薄膜破裂形成的bi-layer結構,雖與原本設計不同,但仍具有光學性質的潛力;利用EDS分析顯示此製程中模具沾黏薄膜材料或是PMMA基材的行為可以忽略。
This thesis is focused on the influence of properties of substrate on formability of direct nanoimprint technique. Using silicon or glass material as the substrate for the direct metal imprint, it is found that higher imprinting force and fracture of mold may occur. Consequently, the formation of hard film/soft substrate system like Al/PMMA in replace of the soft film/hard substrate system is studied herein. The mechanical properties of aluminum thin film on different substrates are characterized by nanoindentation experiments. Subsequently, formation height will be applied to analyze the formation qualities in the nanoimprint process. It can be compared with results of nanoindentation, the relationship between mechanical properties of aluminum thin films on different substrate effects and formation height will be comprehended. In addition, formation mechanism will be understood via observing the cross-section of the microstructures of thin films after imprint process by using FIB and SEM.
Based on the indentation results, the following phenomena can be observed. In the case of Al on silicon, the plastic deformation is contained within the film and this system exhibits strain gradient effects and pile-up phenomenon occurs. On the other hand, in the case of Al on PMMA, the hardness decreases with increase of the depth of indentation because that PMMA substrate starts yielding. Al/PMMA system exhibits sink-in phenomenon. Analyzing the imprint results, the formation height on Al/PMMA system is better than Al/Si system and formation ratio can be used to estimate the surface topology of deformed thin films. Surface topology of deformed Al/PMMA is single peak and the case of Al/Si is dual peak, this result conformed that deformed thin films should be single peak when the formation quality is good. Subsequently, formation mechanism of Al/PMMA system was led by plastic deformation of PMMA substrate, this result can be used to explain that Al thin film was bent, fractured and stretched by the behavior of PMMA filling into cavity of mold. This bi-layer structure still possesses potential optical properties even though the nanostructure is different from original design. According to the EDS results, there is neither aluminum composition nor PMMA being found on the silicon molds and the adhesion behavior between molds and thin films could be negligible.
[1] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, 1995, “Imprint of sub-25 nm vias and trenches in polymers,” Applied Physics Letters, Vol. 67, No. 21, pp. 3114–3116.
[2] M. Xu, H. P. Urbach, D. K. G de Boer, and H. J. Cornelissen, 2005, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Optics Express, Vol. 13, No. 7, pp. 2303-2320.
[3] R. T. Perkins, D. P. Hansen, E. W. Gardner, J. M. Thorne and A. A. Robbins, 2000, “Broaband wire grid polarizer for visible spectrum, ” U.S. Patent 6122103.
[4] Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, 2000, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Applied Physics Letters, Vol. 77, No. 7, pp. 927-929.
[5] J.Wang, P. Sciortino, F. Liu, P. Yuan, 2005, “High-performance large-area ultra-broadband (UV to IR) nanowire-grid polarizers and polarizing beam-splitters,” The International Society for Optical Engineering, Vol. 5931, No. 1, pp. 59310D-1-12.
[6] S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, 2005, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology, Vol. 16, No. 9, Sep. 1, pp. 1874-1877.
[7] L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, 2007, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Applied Physics Letters, Vol. 90, No. 6, pp. 063111.1-063111.3.
[8] 呂盈締, 2006, “金屬直接奈米壓印之成型研究,” 國立清華大學碩士論文.
[9] H.L. Chen, S.Y. Chuang, H.C. Cheng, C.H. Lin, T.C. Chu, 2006, “Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure,” Microelectronic Engineering, Vol. 83, No. 4-9, pp. 893–896.
[10] 謝雲亮, 2005, “尺寸效應對於奈米級金屬壓印成型之影響-分子動力學模擬與奈米壓印實驗,” 國立清華大學碩士論文.
[11] H. W. Sun, J. Q. Liu, D. Chen,. P. Gu, 2005, “Optimization and experimentation of nanoimprint lithography based on FIB fabricated stamp,” Microelectronic Engineering, Vol. 82, No. 2, pp. 175–179.
[12] 吳建利, 2007, “薄膜性質對於金屬奈米壓印成型之影響,” 國立清華大學碩士論文.
[13] M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, D. L. Allara, 2007, “Preparation, structure, and optical properties of nanoporous gold thin films,” Langmuir, Vol. 23, No. 5, pp. 2414-2422.
[14] H. W. Ro, R. L. Jones, H. Peng, D. R. Hines, H. J. Lee, E. K. Lin, A. Karim, D. Y. Yoon, D. W. Gidley, C. L. Soles, 2007, “The direct patterning of nanoporous interlayer dielectric insulator films by nanoimprint lithography,” Advanced Materials, Vol. 19, No. 19, pp. 2919-2924.
[15] R. Saha and W. D. Nix, 2002, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation,” Acta Materialia, Vol. 50, No. 1, pp. 23–38.
[16] F. Zhang, R. Saha, Y. Huang, W. D. Nix, K.C. Hwang, S. Qu, M. Li, 2007, “Indentation of a hard film on a soft substrate: strain gradient hardening effects,” International Journal of Plasticity, Vol. 23, No. 1, p. 25-43.
[17] R. Saha, Z. Xue, Y. Huang, W. D. Nix, 2001, “Indentation of a soft metal on a hard substrate: strain gradient hardening effects,” Journal of the Mechanics and Physics of Solids, Vol. 49, No. 9, pp. 1997-2014.
[18] 謝志瑋, 2008, “直接奈米壓印成型及摩擦效應之研究-分子動力學分析及實驗,” 國立清華大學博士論文.
[19] W. D. Callister, Jr., 2003, “Materials science and engineering an interoduction,” WILEY, New York.
[20] I. N. Sneddon, 1965, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile,” Int. J. Eng. Sci., Vol. 3, pp. 47-56.
[21] W. C. Oliver, G. M. Pharr, 1992, “Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, Vol. 7, No. 6, pp. 1564-1580.
[22] A. Lee, B. M. Clemens, W. D. Nix, 2004, “Stress induced delamination methods for the study of adhesion of Pt thin films to Si,” Acta Materialia, vol. 52, No. 7, pp. 2081-2093.
[23] D. B. Marshall and A.G. Evans, 1984, “Measurement of adherence of residually stressed thin films by indentation mechanics of interface delamination,” J. Appl. Phys, Vol. 56, No. 10, pp. 2632-2638.
[24] Z. Yu, P. Deshpande, W. Wu, J. Wang, S. Y. Chou, 2000, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Applied Physics Letters, Vol. 77, No. 7, pp. 927-929.
[25] J. Friedrich, R. Mix, G. Kühn, 2006, “Contribution of chemical interactions to the adhesion between evaporated metals and functional groups of different types at polymer surfaces,” Adhesion Aspects of Thin Films, Vol. 2, pp. 123-144.
[26] M. S. Bobji, S. K. Biswas, 1999, “Deconvolution of hardness from data obtained from nanoindentation of rough surfaces,” Journal of Materials Research, Vol. 14, No. 6, pp. 2259-2268.
[27] R. Saha, 2001, “Determination of intrinsic film properties from nanoindentation of film/substrate composites,” Dissertation Abstracts International, Vol. 62-01, pp. 0480.
[28] H. Gao, Y. Huang, 2003, “Geometrically necessary dislocation and size dependent plasticity,” Scripta Materialia, Vol. 48, No. 2, pp. 113-118.
[29] D. L. Joslin, W. C. Oliver, 1989, “A new method for analyzing data from continuous depth sensing microindentation tests,” Journal of Materials Research, Vol. 5, No. 1, pp. 123-126.
[30] B. Taljat and G.M. Pharr, 2004, “Development of pile-up during spherical indentation of elastic-plastic solids,” International Journal of Solids and Structures, Vol. 41, No. 14, pp. 3891-3904.
[31] T. Y. Tsui, J. Vlassak, W. D. Nix, 1999, “Indentation plastic displacement field: Part I. The case of soft films on hard substrates,” Journal of Materials Research, Vol. 14, No. 6, pp. 2196-2203.
[32] T. Y. Tsui, J. Vlassak, W. D. Nix, 1999, “Indentation plastic displacement field: Part II. The case of hard films on soft substrates,” Journal of Materials Research, Vol. 14, No. 6, pp. 2204-2209.
[33] H. D. Rowland, A. C. Sun, P. R. Schunk, and W. P. King, 2005, “Impact of polymer film thickness and cavity size on polymer flow during embossing: toward process design rules for nanoimprint lithography,” J. Micromech. Microeng, Vol. 15, No. 12, pp. 2414–2425.
[34] 林盟貴, 2007, “應用有限元素法模擬多層金屬奈米壓印製程,” 國立中正大學碩士論文.