研究生: |
楊宛儒 Yang, Wan Ru |
---|---|
論文名稱: |
以超快時間解析光學克爾光閘螢光光譜研究苯取代基-四氰基乙烯錯合物分子間電荷轉移動態學 Ultrafast Time-Resolved Optical Kerr Gating Fluorescence Studies of Intermolecular Charge Transfer in Substituted-Benzene-Tetracyanoethylene Complexes |
指導教授: |
鄭博元
Cheng, Po Yuan |
口試委員: |
周佳駿
Chou, Chia Chun 王念夏 Wang, Niann Shiah |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 140 |
中文關鍵詞: | 動力學 、錯合物 、超快 、飛秒 |
外文關鍵詞: | dynamics, complex, ultrafast, femtosecond |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用自行架設之克爾光閘時間解析螢光光譜儀(optical kerr gating time-resolved fluorescence spectroscopy)探討甲基取代苯(p-XY,TOL,BZ)與四氰基乙烯(TCNE)在CCl4和CH2Cl2溶劑中形成的電子給體-受體錯合物,以飛秒雷射脈衝激發甲基取代苯-四氰基乙烯錯合物的電荷轉移吸收譜帶(charge transfer band),再搭配時間解析螢光光譜 (time-resolved fluorescence, TRFL)與理論計算結果探討三種錯合物從激發態回到基態的動態學過程。我們提出一個總發光強度函數P(t)用來描述激發態分子在鬆弛(relaxation)過程中,激發態佈居數(population)與躍遷偶極矩(transition dipole moment)隨時間的變化,我們可以觀察到三種錯合物在CH2Cl2和CCl4溶劑中都存在一個非常快的衰減成分(< 0.2 ps),我們將此過程指認為CT2→CT1的IC。在極性溶劑CH2Cl2中,p-XY-TCNE( 、415 nm)、TOL-TCNE( nm)和BZ-TCNE( nm)的電荷再結合時間常數分別為0.6 ps、0.5 ps、7 ps及29 ps。在非極性溶劑CCl4中,p-XY-TCNE( 、415 nm)、TOL-TCNE( nm)和BZ-TCNE( nm)的電荷再結合時間常數分別為280 ps、280 ps、850 ps及150 ps。 我們觀察到甲基取代苯-四氰基乙烯在CH2Cl2溶劑中的電荷再結合速率非常符合Marcus反轉區域(inverted region),即驅動力(driving force, )愈大會使得電子轉移速率愈慢;然而在CCl4溶劑中, BZ-TCNE錯合物卻明顯偏離Marcus反轉區域,我們利用交叉態模型(intersecting state model, ISM)解釋其偏差,即必須考慮錯合物結構改變的影響,ISM提出Marcus理論中兩條位能曲面不只會垂直移動也會水平移動,使得反應能障 發生變化進而影響電子轉移速率。最後,我們比較在不同極性溶劑中對錯合物電荷再結合速率的影響,可以觀察到極性溶劑中的電荷再結合速率明顯較快,這是因為強大的polar solvation效應所造成。值得注意的是,p-XY-TCNE和TOL-TCNE錯合物在CH2Cl2溶劑中的電荷再結合皆應發生在未平衡狀態,即尚未完全solvation或振動鬆弛就回到基態。
We employed a broadband ultrafast time-resolved fluorescence (TRFL) spectrometer implemented by the optical Kerr gating (OKG) to study the charge transfer (CT) state dynamics of methyl-substituted benzene-tetracyanoethylene (MBZ-TCNE, MBZ = benzene, toluene and p-xylene) in two solvents (CH2Cl2, CCl4) of diffrernt polarities. The CT-state of the MBZ-TCNE complexes are reached via femtosecond laser excitation, and the observed TRFL spectra reveal CT-state relaxation dynamics from the initial CT-state to charge recombination (CR). We used a total fluorescence intensity function P(t) to describe the excited-state population and transition dipole moment evolution with time during CT-state relaxation. The three complexes studied in two solvents exhibit a very fast initial decay component of similar time scale (< 0.2 ps), which can be assigned to CT2→CT1 internal conversion. The CR time constants for p-XY-TCNE (λex = 383 nm), TOL-TCNE ( nm) and BZ-TCNE ( nm) are 0.6, 7 and 29 ps in CH2Cl2. The equilibrium CR time constants for p-XY-TCNE
(λex = 383 nm), TOL-TCNE ( nm) and BZ-TCNE ( nm) are 280, 850 and 150 ps in CCl4. The CR rate constants of MBZ-TCNE in CH2Cl2 are in line with the expectation for the Marcus inverted region, but CR rates in CCl4 do not agree with Marcus inverted region. The unexpected reversed -G0 dependence of the equibrium CR rates in CCl4 can be explained by the intersecting state model (ISM), which takes structural relaxation of complexes into account. Finally, CR rates of the CT-state of these MBZ-TCNE complexes are much faster in polar solvents due to the strong polar solvation.
1. Albinsson, B.; Mårtensson, J., J Photochem. Photobiol. C: Photochem. Rev 2008,
9 (3), 138-155.
2. Bottari, G.; de la Torre, G.; Guldi, D. M.; Torres, T., Chem. Rev. 2010, 110 (11),
6768-6816.
3. Gould, I. R.; Farid, S., Acc. Chem. Res. 1996, 29 (11), 522-528.
4. Karlsson, S.; Boixel, J.; Pellegrin, Y.; Blart, E.; Becker, H.-C.; Odobel, F.; Hammarstrom, L., Faraday Discussions 2012, 155 (0), 233-252.
5. Liu, M.; Ito, N.; Maroncelli, M.; Waldeck, D. H.; Oliver, A. M.; Paddon-Row, M.
N., J. Am. Chem. Soc. 2005, 127 (50), 17867-17876.
6. Rosspeintner, A.; Lang, B.; Vauthey, E., Annu. Rev. Phys. Chem. 2013, 64 (1), 247-271.
7. Small, D. W.; Matyushov, D. V.; Voth, G. A., J. Am. Chem. Soc. 2003, 125 (24), 7470-7478.
8. Vauthey, E., J Photochem Photobiol A: Chem. 2006, 179 (1–2), 1-12.
9. Benesi, H. A.; Hildebrand, J. H., J. Am. Chem. Soc. 1949, 71 (8), 2703-2707.
10. Mulliken, R. S., J Phys Chem. 1952, 56 (7), 801-822.
11. Mulliken, R. S., J. Am. Chem. Soc. 1952, 74 (3), 811-824.
12. Rosenberg, H. M.; Hale, D., J Phys Chem. 1965, 69 (7), 2490-2490.
13. Verhoeven, J. W.; Dirkx, I. P.; De Boer, T. J., Tetrahedron 1969, 25 (17), 4037-4055.
14. Kikuchi, K.; Niwa, T.; Takahashi, Y.; Ikeda, H.; Miyashi, T.; Hoshi, M., Chem. Phys. Lett. 1990, 173 (5–6), 421-424.
15. Koch, M.; Letrun, R.; Vauthey, E., J. Am. Chem. Soc. 2014, 136 (10), 4066-4074.
16. Kuzmin, M. G.; Soboleva, I. V.; Dolotova, E. V., J Phys Chem. A 2007, 111 (2), 206-215.
17. Mohammed, O. F.; Adamczyk, K.; Banerji, N.; Dreyer, J.; Lang, B.; Nibbering, E. T. J.; Vauthey, E., Angew. Chem. Int. Ed. 2008, 47 (47), 9044-9048.
18. Nicolet, O.; Vauthey, E., J Phys Chem. A 2003, 107 (31), 5894-5902.
19. Rehm, D.; Weller, A., Isr. J. Chem. 1970, 8 (2), 259-271.
20. Hammett, L. P., J. Am. Chem. Soc. 1937, 59 (1), 96-103.
21. Marcus, R. A., J Phys Chem. 1963, 67 (4), 853-857.
22. Miller, J. R.; Calcaterra, L. T.; Closs, G. L., J. Am. Chem. Soc. 1984, 106 (10), 3047-3049.
23. Orgel, L. E., J Chem Phys 1955, 23 (7), 1352-1353.
24. Zweig, A., Tetrahedron Lett. 1964, 5 (2), 89-94.
25. Mobley, M. J.; Rieckhoff, K. E.; Voigt, E. M., J Phys Chem. 1977, 81 (8), 809-810.
26. Mobley, M. J.; Rieckhoff, K. E.; Voigt, E. M., J Phys Chem. 1978, 82 (18), 2005-2012.
27. Holder, D. D.; Thompson, C. C., J. Chem. Soc., Chem. Commun. 1972, (5), 277b-279.
28. Russell, T. D.; Levy, D. H., J Phys Chem. 1982, 86 (14), 2718-2727.
29. Lippert, J. L.; Hanna, M. W.; Trotter, P. J., J. Am. Chem. Soc. 1969, 91 (15), 4035-4044.
30. Prochorow, J., J. Lumin. 1974, 9 (2), 131-142.
31. Prochorow, J.; Bernard, E., J. Lumin. 1974, 8 (6), 471-487.
32. Hirata, Y.; Kanda, Y.; Mataga, N., J Phys Chem. 1983, 87 (10), 1659-1662.
33. Masuhara, H.; Hino, T.; Mataga, N., J Phys Chem. 1975, 79 (10), 994-1000.
34. Okada, T.; Migita, M.; Mataga, N.; Sakata, Y.; Misumi, S., J. Am. Chem. Soc. 1981, 103 (16), 4715-4720.
35. Okada, T.; Karaki, I.; Mataga, N., J. Am. Chem. Soc. 1982, 104 (25), 7191-7195.
36. Okada, T.; Karaki, I.; Matsuzawa, E.; Mataga, N.; Sakata, Y.; Misumi, S., J Phys Chem. 1981, 85 (26), 3957-3960.
37. Ikeda, N.; Mataga, N.; Steiner, U.; Abdel-Kader, M. H., Chem. Phys. Lett. 1983, 95 (1), 66-71.
38. Kulinowski, K.; Gould, I. R.; Ferris, N. S.; Myers, A. B., J Phys Chem. 1995, 99 (50), 17715-17723.
39. Kulinowski, K.; Gould, I. R.; Myers, A. B., J Phys Chem. 1995, 99 (22), 9017-9026.
40. Rubtsov, I. V.; Yoshihara, K., J Phys Chem. A 1997, 101 (35), 6138-6140.
41. Wynne, K.; Galli, C.; Hochstrasser, R. M., J Chem Phys 1994, 100 (7), 4797-4810.
42. Britt, B. M.; McHale, J. L.; Friedrich, D. M., J Phys Chem. 1995, 99 (17), 6347-6355.
43. Hayashi, M.; Yang, T. S.; Yu, J.; Mebel, A.; Lin, S. H., J Phys Chem. A 1997, 101 (23), 4156-4162.
44. Hayashi, M.; Yang, T. S.; Yu, J.; Mebel, A.; Chang, R.; Lin, S. H.; Rubtsov, I. V.; Yoshihara, K., J Phys Chem. A 1998, 102 (23), 4256-4265.
45. Lakowicz, J. R., Principles of Fluorescence Spectroscopy. 2nd ed.; Plenum Press: New York, 1999.
46. Fleming, G. R., Chemical Applications of Ultrafast Spectroscopy Oxford: New York, 1986.
47. Boyd, R. W., Nonlinear Optics. Academic Press: San Deigo, CA, 1992.
48. Moxtek http://www.moxtek.com/optics/visible_light.html.
49. Kalpouzos, C.; Lotshaw, W. T.; Mcmorrow, D.; Kenneywallace, G. A., J. Phys. Chem. 1987, 91 (8), 2028-2030.
50. Kinoshita, S.; Ozawa, H.; Kanematsu, Y.; Tanaka, I.; Sugimoto, N.; Fujiwara, S., Rev. Sci. Instrum. 2000, 71 (9), 3317-3322.
51. Weber, M. J., Handbook of Optical Materials. CRC Press: Boca Raton, FL, 2003.
52. Marcus, Y., The Properties of Solvents. John Wiley: Sons, New York, 1998.
53. Neelakandan, M.; Pant, D.; Quitevis, E. L., Chem. Phys. Lett. 1997, 265 (1-2), 283-292.
54. Takeda, J.; Nakajima, K.; Kurita, S.; Tomimoto, S.; Saito, S.; Suemoto, T., Phys Rev B 2000, 62 (15), 10083-10087.
55. Schmidt, B.; Laimgruber, S.; Zinth, W.; Gilch, P., Appl. Phys. B Lasers Optic 2003, 76 (8), 809-814.
56. Arzhantsev, S.; Maroncelli, M., Appl. Spectrosc. 2005, 59 (2), 206-220.
57. Andor http://www.andor.com/pdfs/specs/du970n.pdf.
58. 邱志忠, 清華大學化學系博士論文 2013.
59. Gardecki, J. A.; Maroncelli, M., Appl. Spectrosc. 1998, 52 (9), 1179-1189.
60. Bevinton, P. R.; Robinson, D. K., Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill: New York, 1992.
61. Wynne, K.; Galli, C.; Hochstrasser, R. M., J. Chem. Phys. 1994, 100 (7), 4797-4810.
62. Ewall, R. X.; Sonnessa, A. J., J. Am. Chem. Soc. 1970, 92 (9), 2845-&.
63. Zhou, J. W.; Findley, B. R.; Teslja, A.; Braun, C. L.; Sutin, N., J. Phys. Chem. A 2000, 104 (49), 11512-11521.
64. Frey, J. E.; Andrews, A. M.; Ankoviac, D. G.; Beaman, D. N.; Dupont, L. E.; Elsner, T. E.; Lang, S. R.; Zwart, M. A. O.; Seagle, R. E.; Torreano, L. A., J. Org. Chem. 1990, 55 (2), 606-624.
65. Ho, Y. E.; Thompson, C. C., J Chem Soc Chem Comm 1973, (17), 609-610.
66. Jarzeba, W.; Murata, S.; Tachiya, M., Chem. Phys. Lett. 1999, 301 (3-4), 347-355.
67. Reynolds, L.; Gardecki, J. A.; Frankland, S. J. V.; Horng, M. L.; Maroncelli, M., J. Phys. Chem. 1996, 100 (24), 10337-10354.
68. Laurence, C.; Nicolet, P.; Dalati, M. T.; Abboud, J. L. M.; Notario, R., J. Phys. Chem. 1994, 98 (23), 5807-5816.
69. Kamlet, M. J.; Abboud, J.-L. M.; Abraham, M. H.; Taft, R. W., J. Org. Chem. 1983, 48, 2877-2887.
70. Reichardt, C., Chem. Rev. 1994, 94 (8), 2319-2358.
71. Kuchenbecker, D.; Jansen, G., Chemphyschem 2012, 13 (11), 2769-2776.
72. Umapathy, S.; Lakshmanna, A.; Mallick, B., J. Raman Spectrosc. 2009, 40 (3), 235-237.
73. Sun, Z. G.; Lu, J.; Zhang, D. H.; Lee, S. Y., J. Chem. Phys. 2008, 128 (14).
74. Frontiera, R. R.; Shim, S.; Mathies, R. A., J. Chem. Phys. 2008, 129 (6).
75. Gustavsson, T.; Cassara, L.; Gulbinas, V.; Gurzadyan, G.; Mialocq, J. C.; Pommeret, S.; Sorgius, M.; van der Meulen, P., J. Phys. Chem. A 1998, 102 (23), 4229-4245.
76. Nagasawa, Y.; Yartsev, A. P.; Tominaga, K.; Bisht, P. B.; Johnson, A. E.; Yoshihara, K., J. Phys. Chem. 1995, 99 (2), 653-662.
77. Horng, M. L.; Gardecki, J. A.; Papazyan, A.; Maroncelli, M., J. Phys. Chem. 1995, 99 (48), 17311-17337.
78. Larsen, D. S.; Ohta, K.; Fleming, G. R., J. Chem. Phys. 1999, 111 (19), 8970-8979.
79. Zhao, Y.; Truhlar, D. G., J. Phys. Chem. A 2006, 110 (49), 13126-13130.
80. Kysel, O.; Budzak, S.; Mach, P.; Medved, M., Int. J. Quantum Chem 2010, 110 (9), 1712-1728.
81. Mach, P.; Budzak, S.; Medved, M.; Kysel, O., Theor. Chem. Acc. 2012, 131 (9).
82. Serpa, C.; Gomes, P. J. S.; Arnaut, L. G.; Formosinho, S. J.; Pina, J.; de Melo, J. S., Chemistry – A European Journal 2006, 12 (19), 5014-5023.
83. Gould, I. R.; Ege, D.; Moser, J. E.; Farid, S., J. Am. Chem. Soc. 1990, 112 (11), 4290-4301.
84. Dogonadze, R. R.; Itskovitch, E. M.; Kuznetsov, A. M.; Vorotyntsev, M. A., J. Phys. Chem. 1975, 79 (26), 2827-2834.
85. Marcus, R. A., J. Chem. Phys. 1963, 38 (8), 1858-&.