簡易檢索 / 詳目顯示

研究生: 游凱傑
Yu, Kai-Chieh
論文名稱: 高效率大面積有機太陽電池的先進製程開發與分析
Advanced Process Development and Analysis for High-Efficiency Large-Area Organic Solar Cells
指導教授: 洪勝富
Horng, Sheng-Fu
口試委員: 孟心飛
冉曉雯
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 66
中文關鍵詞: 刮刀塗佈有機太陽能電池大面積
外文關鍵詞: blade coating, organic solar cells, large area
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機太陽電池具有成本低、容易製程、可撓曲及可大面積化之優勢,在太陽電池領域深受重視。大面積製程為未來量產化必定要走的方向,所以本論文以刮刀塗佈取代旋轉塗佈製做大面積有機太陽電池,不僅能提升溶液使用率以及具有與roll-to-roll製程結合之潛力。
    本論文使用Glass/ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al做為元件結構,其中電洞傳輸層PEDOT:PSS及主動層P3HT:PCBM由刮刀塗佈製作。在本文中使用雕刻刀定義主動區面積來克服THF擴散進主動區問題。一開始討論電洞傳輸層PEDOT成膜情形,我們以兩次刮塗方式及不同刮速來改善PEDOT層膜厚不均問題。接著探討不同的主動層濃度及刮塗速度對膜厚與元件結果之影響,我們發現主動層厚度會隨著刮速提升而增加,其中刮塗速度為40mm/s 能達到理想的主動層厚度之結果,但伴隨著前後端膜厚差異較大之問題。因為在單位溶液中有較多的溶質,所以將主動層濃度提高能有效的提升膜厚及元件效率,在最佳化的退火條件下以濃度29mg/ml製作單一大面積 (6.3cm2)元件之轉換效率達到3.27 % ;串聯式大面積 (31.5cm2)元件之轉換效率達到2.9 % 。本論文證實了大面積有機太陽電池能夠有良好的轉換效率,未來可以嘗試往軟性基板發展。


    Organic solar cells have recently attracted much attention due to their potential for low-cost, flexible, large active area solar energy harvesting devices and simple fabrication process. We used blade-coating technique to fabricate large-area organic solar cells. Blade-coating technique not only reducing the usage of material
    but also has the potential toward roll-to-roll process.
    In this study, we used blade-coating process to deposit the hole transport layer and active layer. The active layer was a bulk heterojunction (BHJ) consisting of P3HT and PCBM. We overcame the THF solution diffusion into active region by using a graver to define the active region. Then the non-uniformity of hole transport layer was improved by two times coating in different blade speed. However, the thickness of active layer will affect the device performance. We tried many different concentration of P3HT:PCBM solution and different blade speed to find the optimal thickness of active area. And we found that high blade speed leads to increased layer thickness and larger non-uniformity. The best power conversion efficiency of devices using 29mg/ml P3HT:PCBM solution with optimal annealing condition can
    reach to 3.27% (single cell:6.3cm2) and 2.9% (five cells in series:31.5cm2).

    摘要 I ABSTRACT II 誌謝 III 目錄 VIII 圖目錄 X 表目錄 XII 第一章 序論 1 1.1 研究背景 1 1.1.1 前言 1 1.1.2 太陽電池的發展 2 1.1.3 有機太陽電池之發展 3 1.2 研究動機 6 1.2.1 有機高分子太陽能電池優勢 6 1.2.2 P3HT:PCBM 混合之有機高分子太陽能電池 7 1.3 文獻回顧 8 1.3.1 以刮刀塗佈製程製作有機光電元件 8 1.3.2 大面積化有機太陽能電池 10 1.4 論文架構 11 第二章 實驗原理 12 2.1 太陽電池基本介紹 12 2.1.1 太陽電池基本原理 12 2.1.2 理想太陽電池等效電路 13 2.1.3 實際太陽電池等效電路 14 2.1.4 太陽能電池基本參數介紹 16 2.1.5 太陽能電池操作分析 19 2.2 有機太陽能電池材料特性 22 2.2.1 共軛高分子材料特性 22 2.2.2 有機太陽能電池能帶理論 23 2.3 本論文研究理論 24 2.3.1 主動層材料 24 2.3.2 電洞傳輸層材料 25 2.3.3 陽極、陰極材料 25 2.4 研究之元件結構與能帶圖 26 第三章 實驗方法與流程 27 3.1 有機太陽電池元件製作流程 27 3.2 ITO玻璃基板設計及圖樣化 27 3.3 元件基板準備及清洗 31 3.4 電洞傳輸層(HOLE TRANSPORT LAYER, HTL)成膜 32 3.5 主動層(P3HT:PCBM)成膜 33 3.6 陰極金屬蒸鍍 34 3.7 元件封裝 34 3.8 元件量測 35 第四章 實驗結果與討論 37 4.1 主動層的面積定義方式 38 4.2 改變陰極金屬對元件結果之影響 40 4.3 電洞傳輸層成膜 42 4.4 主動層之特性最佳化 45 4.4.1主動層退火溫度比較 45 4.4.2主動層退火時間比較 48 4.4.3主動層材料特性正常與否跟元件結果之關係 51 4.4.4主動層溶液濃度與厚度關係及元件結果比較 52 4.4.5改變主動層刮塗速度與膜厚之影響 57 4.4.6主動層均勻度對元件之影響 59 4.4.7不同主動層刮塗速度與元件結果關係 60 第五章 總結與未來展望 62 參考文獻 64

    [1]. D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon pn junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25,
    676 (1954).
    [2]. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “ Novel 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar
    cells,” Appl.Phys. Lett. 73, 1991 (1998).
    [3]. O. Schultz,S. W. Glunz, G. P. Willeke, “ Multicrystalline silicon solar cells exceeding 20% efficiency,” Prog. Photovolt. : Res. Appl.12, 553( 2004).
    [4]. S. Benagli, D. Borrello, E. Vallat-Sauvain, J .Meier, U. Kroll, J .Hötzel, J .Spitznagel, J .Steinhauser, L .Castens, Y. Djeridane “ High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor,” 24th European Photovoltaic Solar Energy Conference, Hamburg,
    Sept. (2009).
    [5]. News-“Tandem organic photovoltaic reaches 10.6% efficiency a world’s first for polymer organic photovoltaic devices”(2012).
    [6]. K. M. Coakley,Wudl and M. D. McGehee,“Conjugated polymer photovoltaic
    cells,” Chem. Mater. 16, 4533 (2004).
    [7]. Harald Hoppe, and Niyazi Serdar Sariciftci, “Organic solar cell: An review,”
    J. Mater. Res. , Vol. 19, No. 7, (2004).
    [8]. G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, "High-efficiency
    solution processible polymer photovoltaic cells by self-organization of polymer
    blends", Nat. Mater., 4, 864 (2005)

    [9]. K. Kim, J. Liu, M. A. G. Namboothiry, D. L. Carroll, “Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer
    photovoltaics” Appl. Phys. Lett., 90, 163511 (2007)
    [10]. S. R. Tseng, H. F. Meng, K. C. Lee, and S. F. Horng. Appl. Phys. Lett. 93,
    153308 (2008).
    [11]. S. S. Kim, S. I. Na, J. Jo, G. Tae, and D. Y. Kim. ,“Efficient polymer solar
    cells fabricated by simple brush painting,”Adv. Mater. 19, 4410 (2007)
    [12]. F.C.Krebs, T.Tromholt and M. Jørgensen,“Upscaling of polymer solar cell
    fabrication using full roll-to-roll processing”, Nanoscale, 2, 873 (2010).
    [13]. R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R. H. Friend, A. B. Holmes,“The photovoltaic response in poly(ppheny1ene vinylene) thin-film devices”.J.
    Phys. :Condens. Matter. 6, 1379 (1994).
    [14]. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M.T. Rispens, L. Sanchez, J. C. Hummelen, and T Fromherz, “ The influence of materials work function on the open circuit voltage of plastic solar cells,” Thin Solid Film, 403-404,368 (2002).
    [15]. H. Kim, S-H. Jin, H. Suh, and K. Lee, “Origin of the open circuit voltage in
    conjugated polymer-fullerene photovoltaic cells,” In Organic Photovoltaics IV, edited by Z.H. Kafafi, and P.A. Lane, Proceedings of the SPIE, Vol. 5215,
    p. 111(SPIE, Bellingham, WA, 2004).
    [16]. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. De Leeuw, “ Two-dimensional charge transport in self-organized,
    high-mobility conjugated polymers,” Nature, 401, 685 (1999).

    [17]. J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene
    Derivatives,” J.Org. Chem. 60, 532 (1995)
    [18]. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. V. Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk. Nat. Mater. 2, 678
    (2003)
    [19]. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M.
    W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig,
    and D. M. de Leeuw, “Two-dimensional charge transport in self-organized,
    high-mobility conjugated polymers,” Nature, 401, 685 (1999)
    [20]. F. Machui,, S. Langner , X. Zhu, S. Abbott , C.J. Brabec ,“Determination of the P3HT:PCBM solubility parameters via a binary solvent gradient method: Impact of solubility on the photovoltaic performance,” Sol. Energy Mater. Sol.Cells,100
    , 138 (2012)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE