研究生: |
蘇子森 Su, Tzu Sen |
---|---|
論文名稱: |
定電流陽極沉積法製備二氧化鈦薄膜及其應用於鈣鈦礦太陽能電池阻隔層之研究 Preparation of Titanium Dioxide Ultra-thin Film by Galvanostatic Anodic Deposition and Its Application on Blocking Layer for Perovskite Solar Cell |
指導教授: |
衛子健
Wei, Tzu Chien |
口試委員: |
孟慶波
Meng, Qing Bo 陳志銘 Chen, Chih Ming 馮憲平 Feng, Shien Ping |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 鈣鈦礦太陽能電池 、阻隔層 、二氧化鈦 、定電流陽極沉積法 |
外文關鍵詞: | Perovskite solar cell, Blocking layer, Titanium dioxide, Galvanostatic anodic deposition |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在鈣鈦礦太陽能電池 (Perovskite solar cell, PSC)中,由於FTO玻璃與電洞傳輸材料(Hole transport material, HTM)間為歐姆接觸(Ohmic comtact)。一旦兩者接觸會就會造成嚴重的載子複合,降低元件光電轉換效率。因此在FTO玻璃和二氧化鈦多孔支架層中間製作一層阻隔層,避免FTO玻璃與HTM直接接觸面積並形成蕭基界面(Schotty contact),抑制逆向電子傳輸,此為製備高效能鈣鈦礦太陽能電池的必要條件之一。
本研究使用陽極定電流沉積法製備薄且緻密的二氧化鈦(TiO2)阻隔層,藉由調控沉積的電流及電量密度來控制TiO2薄膜的形貌與厚度,並探討阻隔層之材料特性與製備條件對鈣鈦礦電池元件光電化學特性的影響。紫外光可見光光譜顯示TiO2薄膜在製備前後幾乎不影響FTO玻璃的穿透度,顯示薄膜是均勻且非常薄的形態;由場發式電子顯微鏡(FESEM)觀察發現,沉積電流密度會影響二氧化鈦薄膜的微結構;以低電流密度進行沉積時,可得到片狀排列的結晶,提高電流密度後則得到顆粒堆疊的結構。此超薄的TiO2薄膜以二次飛行質譜儀(TOF-SIMS)及循環伏安法(CV)檢測後得知,即使TiO2阻隔層的厚度低於30nm但其依舊表現出良好的抑制再結合效果,證實了電沉積TiO2阻隔層具有薄又緻密的優勢。
目前的實驗結果顯示,最適化電沉積阻隔層條件為電流密度20μA/cm2,且電量密度10mC/cm2時,厚度為13.5奈米。循環伏安檢測中發現,相較於常用的旋轉塗佈法,電沉積TiO2阻隔層的薄膜孔隙度約為旋轉塗佈阻隔層的0.7倍,且搭配電沉積阻隔層的最佳元件效率為13.6%,明顯高於旋轉塗佈法之阻隔層元件效率的10.4%。其主要改進在短路電流(JSC)與填充因子(FF)部分,顯示電沉積阻隔層的緻密性能有效抑制FTO界面的再結合反應,提升電子收集效率。
In perovskite solar cells (PSC), the fluorine-doped tin oxide (FTO) glass and hole transport material (HTM) form ohmic contacts, which lead to recombination of charge carriers and consequently reducing the cell performance seriously. The recombination is effectively reduced via introducing a blocking layer (BL) between FTO glass and titanium dioxide (TiO2) mesoporous layer, which eliminates the contact between FTO and HTM, and results in suppressing the recombination between electrons in FTO and holes in HTM. Therefore, preventing the recombination from direct contact between FTO and HTM layer is crucial for high efficiency PSC.
In this study, an ultra-thin and compact TiO2 BL on FTO glass was prepared by galvanostatic anodic deposition. This electrodeposition (ED) method can control the morphologies and thicknesses of TiO2 film by manipulating the current density and coulomb density. The material properties of BLs preparimg by various deposition conditions and their photoelectrochemical performances were also scrutinized.
Ultraviolet -Visible Spectrometer (UV-Vis) spectra show that the transmittance of FTO substrate is not affected by the ED-BL. FESEM (Field emission scanning electron microscope) images reveal that the structure of the TiO2 film is affected by the depositing current density. As the current density increases, the particle size became smaller. Evidenced by TOF-SIMS (Time-of-flight secondary ion mass spectrometer) and CV (Cyclic voltammogram), it is proved that the interfacial recombination is profoundly suppressed by ED-BL.
Comparing to the commonly used spin coating (SC) method to deposit BL, our study shows that the high quality BL can effectively enhance the performance of perovskite solar cell especially at short circuit current density JSC (mA/cm2) and fill factor FF via decreasing the electrons loss from FTO glass to HTM effectively. As a result, current collection efficiency was enhanced at FTO electrode. The best perovskite cell with ED-BL achieved a higher power conversion efficiency of 13.6% that is higher than SC-BL one of 10.4% by approximately 30%.
1 Snaith, H. J. & Grätzel, M. The Role of a “Schottky Barrier” at an Electron-Collection Electrode in Solid-State Dye-Sensitized Solar Cells. Advanced Materials 18, 1910-1914, doi:10.1002/adma.200502256 (2006).
2 Philibert, C. The present and future use of solar thermal energy as a primary source of energy. IEA (2005).
3 Becquerel, A.-E. Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des courants électriques. CR Acad. Sci 9, 145-149 (1839).
4 Chapin, C. F. & Pearson, G. Great Ideas Changing the World. (1953).
5 NREL. Research Cell Efficiency Records, <http://www.nrel.gov/ncpv/> (2015).
6 Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 6050-6051 (2009).
7 Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088-4093 (2011).
8 Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 1-7 (2012).
9 Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society 134, 17396-17399 (2012).
10 Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396-17399 (2012).
11 Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643-647 (2012).
12 Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316-319 (2013).
13 Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395-398 (2013).
14 Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542-546 (2014).
15 Krüger, J., Plass, R., Grätzel, M., Cameron, P. J. & Peter, L. M. Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. J. Phys. Chem. B 107, 7536-7539 (2003).
16 Chen, W. et al. Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy Environ. Sci. (2015).
17 Do Sung, S. et al. 50 nm sized spherical TiO 2 nanocrystals for highly efficient mesoscopic perovskite solar cells. Nanoscale 7, 8898-8906 (2015).
18 Kumar, M. H. et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 49, 11089-11091 (2013).
19 Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photon 8, 133-138 (2014).
20 Xia, J., Masaki, N., Jiang, K. & Yanagida, S. Sputtered Nb2O5 as a Novel Blocking Layer at Conducting Glass/TiO2 Interfaces in Dye-Sensitized Ionic Liquid Solar Cells. J. Phys. Chem. C 111, 8092-8097 (2007).
21 Kogo, A., Numata, Y., Ikegami, M. & Miyasaka, T. Nb 2 O 5 Blocking Layer for High Open-circuit Voltage Perovskite Solar Cells. Chem. Lett. (2015).
22 Duong, T.-T., Choi, H.-J., He, Q.-J., Le, A.-T. & Yoon, S.-G. Enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by nanocluster deposition. J. Alloys Compd. 561, 206-210 (2013).
23 Dong, Q. et al. Insight into Perovskite Solar Cells Based on SnO2 Compact Electron-Selective Layer. J. Phys. Chem. C 119, 10212-10217 (2015).
24 Kavan, L., Tétreault, N., Moehl, T. & Grätzel, M. Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells. J. Phys. Chem. C 118, 16408-16418 (2014).
25 Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M. & Park, N.-G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927-932 (2014).
26 Karuppuchamy, S., Nonomura, K., Yoshida, T., Sugiura, T. & Minoura, H. Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ionics 151, 19-27 (2002).
27 Duong, T.-T. et al. Enhancement of solar cell efficiency using perovskite dyes deposited via a two-step process. RSC Adv. 5, 33515-33523 (2015).
28 Grant, C. D. et al. Optical and electrochemical characterization of poly(3-undecyl-2,2′-bithiophene) in thin film solid state TiO2 photovoltaic solar cells. Synth. Met. 132, 197-204 (2003).
29 Kavan, L. & Grätzel, M. Highly efficient semiconducting TiO 2 photoelectrodes prepared by aerosol pyrolysis. Electrochim. Acta 40, 643-652 (1995).
30 Ito, S., Ishikawa, K., Wen, C.-J., Yoshida, S. & Watanabe, T. Dye-Sensitized Photocells with Meso-Macroporous TiO2 Film Electrodes. Bull. Chem. Soc. Jpn. 73, 2609-2614 (2000).
31 Cameron, P. J. & Peter, L. M. Characterization of Titanium Dioxide Blocking Layers in Dye-Sensitized Nanocrystalline Solar Cells. J. Phys. Chem. B 107, 14394-14400 (2003).
32 Peng, B. et al. Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells. Coord. Chem. Rev. 248, 1479-1489 (2004).
33 Heo, J. H. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photon 7, 486-491 (2013).
34 Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764-1769 (2013).
35 Yoo, B. et al. Chemically deposited blocking layers on FTO substrates: Effect of precursor concentration on photovoltaic performance of dye-sensitized solar cells. J. Electroanal. Chem. 638, 161-166 (2010).
36 Deng, J., Liu, J., Wang, M. & Song, X. in IEEE-NANO. 789-793 (IEEE).
37 Leijtens, T., Lauber, B., Eperon, G. E., Stranks, S. D. & Snaith, H. J. The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells. J. Phys. Chem. Lett. 5, 1096-1102 (2014).
38 Niu, G. et al. Study on the stability of CH 3 NH 3 PbI 3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705-710 (2014).
39 Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M. & Park, N.-G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol. 9, 927-932 (2014).
40 Chen, H., Wei, Z., Zheng, X. & Yang, S. A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy 15, 216-226 (2015).
41 Kavan, L., O'Regan, B., Kay, A. & Grätzel, M. Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. J. Electroanal. Chem. 346, 291-307 (1993).
42 Wu, M.-S., Tsai, C.-H. & Wei, T.-C. Anodic Deposition of Ultrathin TiO2 Film with Blocking Layer and Anchoring Layer for Dye-Sensitized Solar Cells. J. Electrochem. Soc. 159, B80-B85 (2011).
43 Jang, K.-I., Hong, E. & Kim, J. H. Effect of an electrodeposited TiO2 blocking layer on efficiency improvement of dye-sensitized solar cell. Korean J. Chem. Eng. 29, 356-361 (2012).
44 Aarik, J., Aidla, A., Uustare, T. & Sammelselg, V. Morphology and structure of TiO2 thin films grown by atomic layer deposition. J. Cryst. Growth 148, 268-275 (1995).
45 Hamann, T. W., Martinson, A. B., Elam, J. W., Pellin, M. J. & Hupp, J. T. Atomic layer deposition of TiO2 on aerogel templates: new photoanodes for dye-sensitized solar cells. J. Phys. Chem. C 112, 10303-10307 (2008).
46 Jiang, C. Y. et al. Low temperature processing solid-state dye sensitized solar cells. Appl. Phys. Lett. 100, 113901 (2012).
47 Chandiran, A. K. et al. Sub‐Nanometer Conformal TiO2 Blocking Layer for High Efficiency Solid‐State Perovskite Absorber Solar Cells. Adv. Mater. 26, 4309-4312 (2014).
48 Di Giacomo, F. et al. Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated TiO2 Scaffolds on Plastic Substrates. Adv. Energy Mater. 5, n/a-n/a (2015).
49 Wu, Y. et al. Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl. Phys. Express 7, 052301 (2014).
50 Kavan, L., O'Regan, B., Kay, A. & Grätzel, M. Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. 346 (1993).
51 Madhusudan Reddy, K., Manorama, S. V. & Ramachandra Reddy, A. Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239-245 (2003).
52 Zhang, Y., Li, G., Wu, Y., Luo, Y. & Zhang, L. The Formation of Mesoporous TiO2 Spheres via a Facile Chemical Process. J. Phys. Chem. B 109, 5478-5481 (2005).
53 Nicholson, R. S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 37, 1351-1355 (1965).
54 Schottky, W. Vereinfachte und erweiterte Theorie der Randschicht-gleichrichter. Z. Phys. 118, 539-592 (1942).
55 Schmuki, P., Böhni, H. & Bardwell, J. In situ characterization of anodic silicon oxide films by AC impedance measurements. J. Electrochem. Soc. 142, 1705-1712 (1995).
56 Mo, S.-D. & Ching, W. Y. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Phys. Rev. B 51, 13023-13032 (1995).
57 Kazempour, A., Hashemifar, S. J. & Akbarzadeh, H. The quasi-particle electronic structure of charged oxygen vacancies in TiO 2. Phys. Scr. 88, 055302 (2013).
58 Guang-Lei, T., Hong-Bo, H. & Jian-Da, S. Effect of microstructure of TiO2 thin films on optical band gap energy. Chin. Phys. Lett. 22, 1787 (2005).
59 Wu, M.-S. & Lee, R.-H. Electrochemical growth of iron Oxide thin films with nanorods and nanosheets for capacitors. J. Electrochem. Soc. 156, A737-A743 (2009).