簡易檢索 / 詳目顯示

研究生: 徐志豪
Xu, Zhi-Hao
論文名稱: 軟比較收縮函數的軟不動點定理
Soft fixed point theorems for the soft comparable contractions
指導教授: 陳啟銘
Chen, Chi-Ming
口試委員: 杜威仕
Du, Wei-Shih
李俊璋
Lee, Chiun-Chang
學位類別: 碩士
Master
系所名稱: 理學院 - 計算與建模科學研究所
Institute of Computational and Modeling Science
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 19
中文關鍵詞: 軟度量空間軟不動點軟下確界可比收縮軟可比米爾基勒收縮
外文關鍵詞: Soft metric space, Soft fixed point, Soft infimum comparable contraction, Soft comparable Meir Keeler contraction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這一篇論文裡,我們在軟度量空間簡介了兩種軟可比較函數。除此之外,我們也證明了兩個軟不動點定理,它保證了這兩種可比收縮型映射的軟不動點的存在得到的結果不僅概括也統一了文獻中許多最近的軟不動點的結果 。


    In this article, we introduce the notions of soft infimum comparable contraction and soft comparable Meir Keeler contraction in a soft metric space. Furthermore, we prove two soft fixed point theorems which assure the existence of soft fixed points for these two types of comparable contractions. The obtained results not only generalize but also unify many recent soft fixed point results in the literature.

    Abstract i Acknowledgements ii Contents iii 1 Introduction and preliminaries 1 2 Soft fixed points for the soft infimum comparable contraction 6 3 Soft fixed points for the soft comparable Meir Keeler contraction 12 References 18

    𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐬
    [1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 103–112, 1965.
    [2] D. A. Molodtsov, “Soft set theory–first results,” Computers & Mathematics with Applications, vol. 37, no. 4-5, pp. 19–31, 1999.
    [3] S. Das and S. K. Samanta, “Soft real sets, soft real numbers and their properties,” Journal of Fuzzy Mathematics, vol. 20, no. 3, pp. 551–576, 2012.
    [4] S. Das and S. K. Samanta, “Soft metric,” Annals of Fuzzy Mathematics and Informatics, vol. 6, no. 1, pp. 77–94, 2013.
    [5] P. K. Maji, R. Biswas, and A. R. Roy, “Soft set theory,” Computers & Mathematics
    with Applications, vol. 45, no. 4-5, pp. 555–562, 2003.
    [6] M. I. Ali, F. Feng, X. Liu, W. K. Min, and M. Shabir, “On some new operations in soft set theory,” Computers & Mathematics with Applications, vol. 49, pp.1547–1553, 2005.
    [7] K. V. Babitha and J. J. Sunil, “Soft set relations and functions,” Computers & Mathematics with Applications, vol. 60, no. 7, pp. 1840–1849, 2010.
    [8] D. Chen, E. C. C. Tsang, D. S. Yeung, and X. Wang, “The parameterization reduction of soft sets and its applications,” Computers & Mathematics with Applications, vol. 49, no. 5-6, pp. 757–763, 2005.
    [9] C. G. Aras, A. Sonmez, and H. Cakall, “On soft mappings,” 2013,
    [10] P. Majumdar and S. K. Samanta, “On soft mappings,” Computers &
    Mathematics with Applications, vol. 60, no. 9, pp. 2666–2672, 2010.
    [11] M. Abbas, G. Murtaza, and S. Romaguera, “Soft contraction theorem,” Journal of Nonlinear and Convex Analysis, vol. 16, pp. 423–435, 2015.
    [12] M. Abbas, G. Murtaza, and S. Romaguera, “On the fixed point theory of soft metric spaces,” Fixed Point Theory Appl. 2016.
    [13] C.-M. Chen, I.-J. Lin. ”Fixed point theory of the soft Meir-Keeler type contractive mappings on a complete soft metric space,”. Fixed Point Theory Appl. 2015.
    [14] C.-M. Chen, “Common fixed-point theorems in complete generalized metric spaces,” Journal of Applied Mathematics, vol. 2012.
    [15] Boyd, D.W.,Wong, J.S.W.: “Nonlinear contractions,” Proc. Am.Math. Soc. 20, pp.458–464 1969.
    [16] A. Meir and E. Keeler, “A theorem on contraction mappings,” Journal of Mathematical Analysis and Applications, vol. 28, no. 2, pp. 326–329, 1969.
    [17] G. Jungck, K.B. Moon, S. Park, B.E. Rhoades “On generalizations of the Meir Keeler J. Math. Anal. Appl. pp. 180, 221-222, 1993.

    QR CODE