研究生: |
何廷峻 Ting-Jyun He |
---|---|
論文名稱: |
應用堆疊式高介電穿隧氧化層與高功函數金屬閘極於電荷捕捉式快閃記憶體之電特性研究 Investigation of applying stack High-K tunneling oxide and high work function metal gate to charge-trapping Flash Memory |
指導教授: |
張廖貴術
Kuei-Shu Chang-Liao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 快閃記憶體 、穿隧氧化層 、高介電材料 、高功函數電極 、SONOS 、PIII |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當浮動閘極結構之快閃記憶體無法滿足元件微縮的發展時,而SONOS 結構快閃記憶體再度成為研究的方向,然而以氮化矽當作電荷捕捉層之SONOS 快閃記憶體於次微米時代之後,無法再藉由降低穿隧氧化層的方式提高寫入操作速度,況且元件的電荷保存力也將有所疑慮。因此希望以高介電材料的應用達到較佳的工作特性與可靠度特性。
本論文的研究重點主要包含三個方向:
(一) 採用能帶工程理論,設計堆疊式之穿隧氧化層,搭配高介電材
料,應用於電荷捕抓式快閃記體元件,並觀察比較其綜合之電特性表現。(本章實驗樣品為電晶體結構)
(二) 選用較高功函數金屬閘極MoN 應用於電荷捕捉式快閃記憶中,觀察比較此金屬閘極的變動將對元件電特性有何改善與影
響。(本章實驗樣本包含電容結構與電晶體結構)
(三) 利用電漿沈浸離子佈植氮化電荷捕抓式快閃記憶體,觀察用此法氮化對元件電特性有何改善與影響。(本章實驗樣本為電容結構)
實驗結果可以觀察到堆疊式高介電穿隧氧化之設計,有助於增進寫入速度,並且依然保有不錯的電荷保存力。而選擇較高功函數之金屬閘極,將有助於抹除特性的有效改善。
參考文獻
[1] Marvin H. White, et al., ”On the Go with SONOS”, IEEE Circuit & Device,JULY 2000, p22.
[2] Marvin H. White, et al., “A low voltage SONOS nonvolatile semiconductor memory technology”,IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol.20, No.2, JUNE 1997, p190.
[3] Jiankang Bu, et al., “Retention reliability enhanced SONOS NVSM with scaled programming voltage”, IEEE Aerospace Conference paper, Vol.5 2001, p5-2383.
[4] K.Tamer San, et al., “Effects of erase source bias on Flash EPROM device reliability”, IEEE Transactions on Electron Device, Vol.42, No.1, JANUARY 1995, p150.
[5] T.Sugizaki, et al., “Novel multi-bit SONOS type flash memory using a high-k charge trapping layer”, IEEE Symposium on VLSI Technology Digest of Technical Paper, 2003, p27.
[6] Min She, “Semiconductor Flash Memory Scaling”, 2003.
[7] Jan Van Houdt, et al., “High-k materials for nonvolatile memory applications',IEEE Physics Symposium, 2005, p234.
[8] Sanghun Jeon, et al., ”High Work-Function metal gate and high-K dielectric for charge trap flash memory device applications”, IEEE Transactions on Electron Device, Vol.52, No.12, DECEMBER 2005,p2654.
[9] Yan-Ny Tan, et al., ”High-k HfAlO charge trapping layer in SONOS-type nonvolatile memory device for high speed operation”, IEEE Electron Device Meeting, 2004, p889.
[10] Min She, et al., ”Silicon-nitride as a tunnel dielectric for improved SONOS-type flash memory”, IEEE Electron Device Letters, Vol.24, No.5, MAY, 2003,p309.
[11] Hang-Ting Lue, et al., ”BE-SONOS A bandgap engineered SONOS with excellent performance and reliability”, IEEE International Electron Devices Meeting, 2005.
[12] B. Govoreanu, et al., “VARIOT:A Novel Multilayer Tunnel Barrier Concept for Low-Voltage Nonvolatile Memory Devices”, IEEE Electron Devices Letter, Vol.24, No.2, FEBRUARY 2003, p99.
[13] 王炳琨,”不同HfOxNy/SiO2 堆疊穿隧介電層對快閃記憶體操作特性之影響”,國立清華大學工程與系統科學研究所, 2004,p.60.
[14] J.Buckley, et al., “Experimental and theoretical of layered tunnel barriers for nonvolatile memorys”, IEEE Electron Devices Letter,2005,p.509.
[15] W. J. Tsai, et al., “Data retention behavior of a SONOS type two-bit storage flash memory cell”, IEEE International Electron Devices Meeting, 2001.p32.
[16] K. Tamer San, et al., “Effects of erase source bias on Flash EPROM device reliability”, IEEE Transactions on Electron Devices , Vol.42, No.1, JANUARY 1995,p.150.
[17] Verma, et al., ”Reliability Performance of ETOX Based Flash Memory”, International Reliability Physics Symp, 1998, p158.
[18] Haddad, et al., ”Degradation Due to Hole Trapping in Flash Memory Cells”, IEEE Electron Dev. Lett., Vol.10, No3, Mar. 1989, p.117
.
[19] Adam Brand, et al., ”Novel Read Distub Failure Mechanism Induced by Flash Cycling”, International Reliability Physics Symp, 1993, P.127.
[20] 張俊彥,鄭晃忠,”積體電路製程及設備技術手冊”,中華民國電子材料與元件協會,1997, p188.
[21] B. Govoreanu, P. Blomme, J. Van Houdt and K. De Meyer, “Simulation of Nanofloating Gate Memory with High-k Stacked Dielectrics”, IEEE Electron Devices Letter,2003, p299.
[22] Jong Jin Lee, Xuguang Wang ,Weiping Bai ,Nan Lu ,and Dim-Lee Kwory, ”Theoretical and Experimental Investigation of Si Nanocrystal Memory Device With HfO2 ,High-k Tunneling Dielectric”, IEEE Transactions on Electron Devices ,Vol. 50,NO 10, 2003, p.2067.
[23] Yan-Ny Tan,et al.,”Over-Erase Phenomenon in SONOS-Type Flash memory and its Minimization using a Hafnium Oxide Charge Storage Layer”,IEEE Transaction on Electron Device,Vol.51,No.7,JULY,2004,p1143
[24] Sanghun Jeon, et al., ”Impact of Metal Work Function on Memory Properties of Charge-Trap Flash Memory Devices Using Fowler-Nordheim P/E Mode”, IEEE Electron Dev. Lett., Vol.27, No.6, Mar. 1989, P117.
[25] Tsu-Jae King, et al., “Novel Materials and Processes for MOS Devices”, MICRO Project 98-071,1998-99
[26] H. Matsuhashi and S. Nishikawa, “Optimum Electrode Materials for Ta2O5 Capacitors for High- and Low Temperature Processes”, Jpn. J. Appl. Phys. Vol.33.1994 p1293 .
[27] 簡伯諺,”鉬金屬閘極金氧半元件之電性研究”,國立清華大學工程與系統科學研究所,2007 p65.
[28] Y.Z.You,et al.,”Plasma Immersion Ion Implantation and Deposition,”IEEE Mechanic development and new materials,2005,p565.
[29] Yan Ny Tan, et al.,”High-K HfAlO Charge Trapping Layer in SONOS-type Nonvolatile Memory Device for High Speed Operation”,IEEE Elcetron Device Meeting,2004,p889.
[30] M.Specht, et al.,”Retention time of novel charge trapping memories using Al2O3 dielectrics”,IEEE Symposinm on VLSI,2003,p155.
[31] Sanghum Jeon, et al.,”Triple high k stacks(Al2O3/HfO2/ Al2O3)with high pressure(10atm)H2 and D2 annealing for SONOS type flash memory device applications”,IEEE Conference on Nanotechnology,2004,p53.
[32] Robert F. Steimle,et al., ”Hybrid Silicon Nanocrystal Silicon Nitride Dynamic Random Access Memory” Dec. 2003,p335.
[33] Naoto Umezawa,et al., ” The Role of Nitrogen Incorporation in Hf-based High-k Dielectrics: Reduction in Electron Charge Traps”, IEEE Proceedings of ESSDERC, France, 2005,p201.
[34] C. H. Choi, S. J. Rhee, T. S. Jeon, N. Lu, J. H. Sim, R.Clark, M. Niwa and D. L.Kwong, Tech. Dig. Int.Electron Devices Meet., 857 (2002).