研究生: |
林進之 Lin, Jinn-Jy |
---|---|
論文名稱: |
玉米轉錄因子之鑑定與分類及其結合位點之預測 Maize Transcription Factors: Identification, Classification and Target Site Prediction |
指導教授: |
李文雄
Li, Wen-Hsiung |
口試委員: |
古森本
Ku, Sun-Ben 黃宣誠 Huang, Hsuan-Cheng 施純傑 Shih, Chun-Chieh 蔡懷寬 Tsai, Huai-Kuang 莊樹諄 Chuang, Trees-Juen |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 玉米 、轉錄因子 、基因體學 、轉錄體學 |
外文關鍵詞: | maize, transcription factor, genomics, transcriptomics |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
玉米是重要的糧食及生質能源作物。在科學研究上,它是C4光合作用原理研究上的重要模式物種。在2009年,它的基因體(genomes)被定序而公開出來。在高通量定序及生物資訊技術越來越先進之下,玉米的基因體及轉錄體(transcriptomes)的資訊越來越豐富並且足夠用來進行各種組織細胞發育以及面對不同內在外在環境刺激的基因表現的巨觀研究。然而關於調控基因體學(regulatory genomics)研究的資料還是相當缺乏的。
調控基因體學是研究基因體中調控基因表現的功能元素與他們的調控者的關係的研究領域。為了瞭解一個物種調控基因體學的知識,我們必須知道它的轉錄因子(transcription factors,簡稱TFs)、轉錄共同調控因子(transcription coregulators簡稱TCs)、轉錄因子結合位點(transcription factor binding sites,簡稱TFBSs)以及轉錄因子與結合位點的關係(TF-TFBS relationships)。本論文著重玉米調控基因體學之各種重要的元素的研究。
在這研究上我設計了一系列生物資訊的方法。首先我鑑定了玉米中2538個轉錄因子基因以及149個轉錄共同調控因子基因。因為小米跟玉米一樣是重要的C4光合作用模式物種,所以我也鑑定了小米Yugu1品系的1880個轉錄因子基因以及99個轉錄共同調控因子基因,還有張谷品系的1846個轉錄因子基因及104個轉錄共同調控因子基因。我發現90%以上的玉米及小米的轉錄因子基因以及轉錄共同調控因子基因在阿拉伯芥或水稻都有同源基因,而至少75%以上的玉米及小米的轉錄因子基因以及轉錄共同調控因子基因都可以在轉錄體資料中知道它們是有表現的。我比較了他們在各組織轉錄體資料的表現量,也在玉米發現了995個轉錄因子基因以及71個轉錄共同調控因子基因跟C4光合作用的特徵可能有關,同時在小米中發現了546個轉錄因子基因以及33個轉錄共同因子基因可能跟C4光合作用有關。
接著我跟游竣評博士合作,整合了玉米基因體及葉片發育的轉錄體資料,預測了跟葉片發育相關的轉錄因子結合位點、還有他們對應的轉錄因子。我們假設轉錄因子基因跟下游基因的表達是同步的、相同功能的基因必須有同樣的轉錄因子結合位點、有作用的轉錄因子結合位點必須也在相近物種的同源基因存在、及演化上同源的轉錄因子也會有相近的轉錄因子結合位點。我們找到了239個玉米轉錄因子及結合位點的配對,他們對應到135個不重複的玉米轉錄因子,預測方法的成功率是76%。我的論文整合了從上游的轉錄因子跟轉錄共同調控因子的鑑定,到下游在玉米葉片發育過程中轉錄因子與結合位點的關聯性的分析,這些資訊也會幫助我們了解C4光合作用跟C4植物葉片花環結構發育的調控網路。
Maize (Zea mays) is an important crop and feedstock of biofuel. It is also a common model plant for studying the biology of C4 photosynthesis and the development of kranz anatomy, a key structure in C4 plant leaves. Its genome was sequenced in 2009. Through advances in DNA sequencing technologies and bioinformatics skills, genomic and transcriptomic information in maize has become abundant and has facilitated large-scale studies greatly. However, knowledge on the regulatory genomics in the 2GB maize genome is still very limited.
Regulatory genomics is the study of the relationship between functional elements and their regulators in a genome. Thus, to study the regulatory genomics of an organism, we need to identify the transcription factors (TFs), transcription coregulators (TCs), transcription factor binding sites (TFBSs) and TF-TFBS relationships. I aimed at gaining a good understanding of the regulatory genomics of maize, from which one can dissect the key regulatory features.
I designed bioinformatics methods to study each aspect of the regulatory genomics in maize leaf development. My main focuses are the construction of the modules consisting of TF and TC gene, TFBSs and TF-TFBS pairs. I first annotated 2538 TF genes and 149 TC genes in maize. Because millet (Setaria italica) is another important C4 plant, I also annotated 1880 TF genes and 99 TC genes in millet Yugu1, and 1846 TF genes and 104 TC genes in millet Zhang gu. I provided supporting evidence for my predictions of TF and TC genes from gene expression data in maize or millet and from homologous genes in Arabidopsis or rice. I found that more than 90% of TF and TC genes in maize and millets have homologs in Arabidopsis or rice and more than 75% of maize and millet TF and TC genes were expressed. I evaluated the expression preference of TF and TC genes in tissues in maize and millet and identified 995 TF genes and 71 TC genes in maize and 546 TF genes and 33 TC genes in millet that may potentially contribute to C4 characteristics in the two species.
I then collaborated with Dr. Chun-Ping Yu and developed a method that can identify the TFBSs in maize genome by integrating the time-course RNA-seq transcriptome of maize leaf development, maize genome sequence data and available TF-TFBS pairs in other species. We assumed that the TF genes should be coexpressed with their target genes, genes with the same function should possess the same TFBSs and regulated by the same TFs, the functional TFBSs should be conserved in closely related species, and the homologous TFs should still possess similar DNA-binding specificities. We identified 239 maize TF-TFBS pairs for 135 nonredundant maize TFs, achieving a prediction rate of 76%.
My study provides the overall work from characterization of TFs and TCs to the TF-TFBS relationship in maize leaf development and the basis for understanding the regulatory network of C4 photosynthesis and Kranz anatomy.
1. Ohme-Takagi M, Shinshi H: Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 1995, 7(2):173-182.
2. Nole-Wilson S, Krizek BA: DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic Acids Res 2000, 28(21):4076-4082.
3. Ulmasov T, Hagen G, Guilfoyle TJ: ARF1, a transcription factor that binds to auxin response elements. Science 1997, 276(5320):1865-1868.
4. Guilfoyle TJ, Ulmasov T, Hagen G: The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol Life Sci 1998, 54(7):619-627.
5. Mannervik M, Nibu Y, Zhang H, Levine M: Transcriptional coregulators in development. Science 1999, 284(5414):606-609.
6. Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ: AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 2001, 13(12):2809-2822.
7. Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G: The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 2002, 16(13):1610-1615.
8. Mitsuda N, Ohme-Takagi M: Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiol 2009, 50(7):1232-1248.
9. Guo A, He K, Liu D, Bai S, Gu X, Wei L, Luo J: DATF: a database of Arabidopsis transcription factors. Bioinformatics 2005, 21(10):2568-2569.
10. Iida K, Seki M, Sakurai T, Satou M, Akiyama K, Toyoda T, Konagaya A, Shinozaki K: RARTF: database and tools for complete sets of Arabidopsis transcription factors. DNA Res 2005, 12(4):247-256.
11. Perez-Rodriguez P, Riano-Pachon DM, Correa LG, Rensing SA, Kersten B, Mueller-Roeber B: PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 2010, 38(Database issue):D822-827.
12. Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E: AGRIS: the Arabidopsis Gene Regulatory Information Server, an update. Nucleic Acids Res 2011, 39(Database issue):D1118-1122.
13. Yilmaz A, Nishiyama MY, Jr., Fuentes BG, Souza GM, Janies D, Gray J, Grotewold E: GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 2009, 149(1):171-180.
14. Ling Y, Du Z, Zhang Z, Su Z: ProFITS of maize: a database of protein families involved in the transduction of signalling in the maize genome. BMC Genomics 2010, 11:580.
15. Dai X, Sinharoy S, Udvardi M, Zhao PX: PlantTFcat: an online plant transcription factor and transcriptional regulator categorization and analysis tool. BMC Bioinformatics 2013, 14:321.
16. Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS: TreeTFDB: an integrative database of the transcription factors from six economically important tree crops for functional predictions and comparative and functional genomics. DNA Res 2013, 20(2):151-162.
17. Jin J, Zhang H, Kong L, Gao G, Luo J: PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 2014, 42(Database issue):D1182-1187.
18. Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, Luo J, Gao G: PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research 2017, 45(D1):D1040-D1045.
19. Lin J-J, Yu C-P, Chang Y-M, Chen SC-C, Li W-H: Maize and millet transcription factors annotated using comparative genomic and transcriptomic data. BMC genomics 2014, 15(1):818.
20. Jayaram N, Usvyat D, Martin AC: Evaluating tools for transcription factor binding site prediction. BMC bioinformatics 2016, 17.
21. Stormo GD: DNA binding sites: representation and discovery. Bioinformatics 2000, 16(1):16-23.
22. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K: TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes. Nucleic acids research 2006, 34(suppl 1):D108-D110.
23. Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, Buchman S, Chen C-y, Chou A, Ienasescu H: JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic acids research 2013:gkt997.
24. Hehl R, Norval L, Romanov A, Bülow L: Boosting AthaMap database content with data from protein binding microarrays. Plant and Cell Physiology 2016, 57(1):e4-e4.
25. Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R: DNA-binding specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences 2014, 111(6):2367-2372.
26. Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, Najafabadi HS, Lambert SA, Mann I, Cook K: Determination and inference of eukaryotic transcription factor sequence specificity. Cell 2014, 158(6):1431-1443.
27. Sullivan AM, Arsovski AA, Lempe J, Bubb KL, Weirauch MT, Sabo PJ, Sandstrom R, Thurman RE, Neph S, Reynolds AP: Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana. Cell reports 2014, 8(6):2015-2030.
28. O’Malley RC, Huang S-sC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR: Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 2016, 165(5):1280-1292.
29. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS: MEME SUITE: tools for motif discovery and searching. Nucleic acids research 2009:gkp335.
30. Thijs G, Lescot M, Marchal K, Rombauts S, De Moor B, Rouze P, Moreau Y: A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 2001, 17(12):1113-1122.
31. Hughes JD, Estep PW, Tavazoie S, Church GM: Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. Journal of molecular biology 2000, 296(5):1205-1214.
32. Pavesi G, Mereghetti P, Mauri G, Pesole G: Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic acids research 2004, 32(suppl 2):W199-W203.
33. Marsan L, Sagot M-F: Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification. Journal of computational biology 2000, 7(3-4):345-362.
34. Kulakovskiy IV, Boeva V, Favorov AV, Makeev VJ: Deep and wide digging for binding motifs in ChIP-Seq data. Bioinformatics 2010, 26(20):2622-2623.
35. Machanick P, Bailey TL: MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 2011, 27(12):1696-1697.
36. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W: Model-based analysis of ChIP-Seq (MACS). Genome biology 2008, 9(9):R137.
37. Mahony S, Benos PV: STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic acids research 2007, 35(suppl 2):W253-W258.
38. Berger MF, Badis G, Gehrke AR, Talukder S, Philippakis AA, Peña-Castillo L, Alleyne TM, Mnaimneh S, Botvinnik OB, Chan ET: Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 2008, 133(7):1266-1276.
39. Hettiarachchi N, Kryukov K, Sumiyama K, Saitou N: Lineage-specific conserved noncoding sequences of plant genomes: their possible role in nucleosome positioning. Genome biology and evolution 2014, 6(9):2527-2542.
40. Yu CP, Chen SC, Chang YM, Liu WY, Lin HH, Lin JJ, Chen HJ, Lu YJ, Wu YH, Lu MY et al: Transcriptome dynamics of developing maize leaves and genomewide prediction of cis elements and their cognate transcription factors. Proc Natl Acad Sci U S A 2015, 112(19):E2477-2486.
41. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J et al: A first-generation haplotype map of maize. Science 2009, 326(5956):1115-1117.
42. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al: The B73 maize genome: complexity, diversity, and dynamics. Science 2009, 326(5956):1112-1115.
43. Liu WY, Chang YM, Chen SC, Lu CH, Wu YH, Lu MY, Chen DR, Shih AC, Sheue CR, Huang HC et al: Anatomical and transcriptional dynamics of maize embryonic leaves during seed germination. Proc Natl Acad Sci U S A 2013, 110(10):3979-3984.
44. Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J et al: Reference genome sequence of the model plant Setaria. Nat Biotechnol 2012, 30(6):555-561.
45. Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W et al: Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 2012, 30(6):549-554.
46. Tsai KJ, Lu M-YJ, Yang K-J, Li M, Teng Y, Chen S, Ku MS, Li W-H: Assembling the Setaria italica L. Beauv. genome into nine chromosomes and insights into regions affecting growth and drought tolerance. Scientific reports 2016, 6.
47. Kersey PJ, Allen JE, Christensen M, Davis P, Falin LJ, Grabmueller C, Hughes DS, Humphrey J, Kerhornou A, Khobova J et al: Ensembl Genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res 2014, 42(Database issue):D546-552.
48. Zhang HM, Chen H, Liu W, Liu H, Gong J, Wang H, Guo AY: AnimalTFDB: a comprehensive animal transcription factor database. Nucleic Acids Res 2012, 40(Database issue):D144-149.
49. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J et al: Pfam: the protein families database. Nucleic Acids Res 2014, 42(Database issue):D222-230.
50. Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA: Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci U S A 2012, 109(8):3167-3172.
51. Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, de Leon N, Kaeppler SM: Genome-wide atlas of transcription during maize development. Plant J 2011, 66(4):553-563.
52. Bullard JH, Purdom E, Hansen KD, Dudoit S: Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010, 11:94.
53. Dash S, Van Hemert J, Hong L, Wise RP, Dickerson JA: PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Res 2012, 40(Database issue):D1194-1201.
54. Zimmer AD, Lang D, Buchta K, Rombauts S, Nishiyama T, Hasebe M, Van de Peer Y, Rensing SA, Reski R: Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics 2013, 14:498.
55. Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, Almeida-King J, Staines D, Derwent P, Kerhornou A et al: Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford) 2011, 2011:bar030.
56. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
57. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
58. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29.
59. Wang X, Elling AA, Li X, Li N, Peng Z, He G, Sun H, Qi Y, Liu XS, Deng XW: Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 2009, 21(4):1053-1069.
60. Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR et al: The developmental dynamics of the maize leaf transcriptome. Nat Genet 2010, 42(12):1060-1067.
61. Davidson RM, Hansey CN, Gowda M, Childs KL, Lin HN, Vaillancourt B, Sekhon RS, de Leon N, Kaeppler SM, Jiang N et al: Utility of RNA Sequencing for Analysis of Maize Reproductive Transcriptomes. Plant Genome 2011, 4(3):191-203.
62. Waters AJ, Makarevitch I, Eichten SR, Swanson-Wagner RA, Yeh CT, Xu W, Schnable PS, Vaughn MW, Gehring M, Springer NM: Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell 2011, 23(12):4221-4233.
63. Bolduc N, Yilmaz A, Mejia-Guerra MK, Morohashi K, O'Connor D, Grotewold E, Hake S: Unraveling the KNOTTED1 regulatory network in maize meristems. Genes Dev 2012, 26(15):1685-1690.
64. Chang YM, Liu WY, Shih AC, Shen MN, Lu CH, Lu MY, Yang HW, Wang TY, Chen SC, Chen SM et al: Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol 2012, 160(1):165-177.
65. Chettoor AM, Givan SA, Cole RA, Coker CT, Unger-Wallace E, Vejlupkova Z, Vollbrecht E, Fowler JE, Evans M: Discovery of novel transcripts and gametophytic functions via RNA-seq analysis of maize gametophytic transcriptomes. Genome Biol 2014, 15(7):414.
66. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN: A gene expression map of the Arabidopsis root. Science 2003, 302(5652):1956-1960.
67. Smaczniak C, Immink RG, Angenent GC, Kaufmann K: Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 2012, 139(17):3081-3098.
68. Nambara E, Hayama R, Tsuchiya Y, Nishimura M, Kawaide H, Kamiya Y, Naito S: The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination. Developmental biology 2000, 220(2):412-423.
69. Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ: LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proceedings of the National Academy of Sciences of the United States of America 2001, 98(20):11806-11811.
70. Suzuki M, Wang HHY, McCarty DR: Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant physiology 2007, 143(2):902-911.
71. Tsukagoshi H, Morikami A, Nakamura K: Two B3 domain transcriptional repressors prevent sugar-inducible expression of seed maturation genes in Arabidopsis seedlings. Proceedings of the National Academy of Sciences of the United States of America 2007, 104(7):2543-2547.
72. Tsaballa A, Pasentsis K, Darzentas N, Tsaftaris AS: Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper. BMC plant biology 2011, 11(1):46-46.
73. Juarez MT, Twigg RW, Timmermans MC: Specification of adaxial cell fate during maize leaf development. Development 2004, 131(18):4533-4544.
74. Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL: Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 1999, 126(18):4117-4128.
75. Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS: KANADI regulates organ polarity in Arabidopsis. Nature 2001, 411(6838):706-709.
76. Kleine T: Arabidopsis thaliana mTERF proteins: evolution and functional classification. Front Plant Sci 2012, 3:233.
77. Dolfini D, Gatta R, Mantovani R: NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 2012, 47(1):29-49.
78. Jiao Y, Tausta SL, Gandotra N, Sun N, Liu T, Clay NK, Ceserani T, Chen M, Ma L, Holford M et al: A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 2009, 41(2):258-263.
79. Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Buckler ES et al: Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 2011, 7(11):e1002383.
80. Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G: Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 2010, 10:145.
81. Yamaguchi M, Kubo M, Fukuda H, Demura T: Vascular-related NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 2008, 55(4):652-664.
82. He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY: AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 2005, 44(6):903-916.
83. Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T: Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 2005, 19(16):1855-1860.
84. Guo HS, Xie Q, Fei JF, Chua NH: MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 2005, 17(5):1376-1386.
85. John CR, Smith-Unna RD, Woodfield H, Covshoff S, Hibberd JM: Evolutionary convergence of cell-specific gene expression in independent lineages of C4 grasses. Plant Physiol 2014, 165(1):62-75.
86. Tausta SL, Li P, Si Y, Gandotra N, Liu P, Sun Q, Brutnell TP, Nelson T: Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes. J Exp Bot 2014, 65(13):3543-3555.
87. Wang P, Kelly S, Fouracre JP, Langdale JA: Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy. Plant J 2013, 75(4):656-670.
88. Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S et al: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012, 40(Database issue):D306-312.
89. Zhao Y, Cai M, Zhang X, Li Y, Zhang J, Zhao H, Kong F, Zheng Y, Qiu F: Genome-wide identification, evolution and expression analysis of mTERF gene family in maize. PLoS One 2014, 9(4):e94126.
90. Mizuno T, Nakamichi N: Pseudo-Response Regulators (PRRs) or True Oscillator Components (TOCs). Plant Cell Physiol 2005, 46(5):677-685.
91. Satbhai SB, Yamashino T, Okada R, Nomoto Y, Mizuno T, Tezuka Y, Itoh T, Tomita M, Otsuki S, Aoki S: Pseudo-response regulator (PRR) homologues of the moss Physcomitrella patens: insights into the evolution of the PRR family in land plants. DNA Res 2011, 18(1):39-52.
92. Takata N, Saito S, Saito CT, Uemura M: Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators. BMC Evol Biol 2010, 10:126.
93. Babiychuk E, Vandepoele K, Wissing J, Garcia-Diaz M, De Rycke R, Akbari H, Joubes J, Beeckman T, Jansch L, Frentzen M et al: Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family. Proc Natl Acad Sci U S A 2011, 108(16):6674-6679.
94. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998, 393(6683):386-389.
95. Wade PA: Methyl CpG-binding proteins and transcriptional repression. Bioessays 2001, 23(12):1131-1137.
96. He S, Tan G, Liu Q, Huang K, Ren J, Zhang X, Yu X, Huang P, An C: The LSD1-interacting protein GILP is a LITAF domain protein that negatively regulates hypersensitive cell death in Arabidopsis. PLoS One 2011, 6(4):e18750.
97. Street VA, Bennett CL, Goldy JD, Shirk AJ, Kleopa KA, Tempel BL, Lipe HP, Scherer SS, Bird TD, Chance PF: Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. Neurology 2003, 60(1):22-26.
98. Moriwaki Y, Begum NA, Kobayashi M, Matsumoto M, Toyoshima K, Seya T: Mycobacterium bovis Bacillus Calmette-Guerin and its cell wall complex induce a novel lysosomal membrane protein, SIMPLE, that bridges the missing link between lipopolysaccharide and p53-inducible gene, LITAF(PIG7), and estrogen-inducible gene, EET-1. J Biol Chem 2001, 276(25):23065-23076.
99. Markljung E, Jiang L, Jaffe JD, Mikkelsen TS, Wallerman O, Larhammar M, Zhang X, Wang L, Saenz-Vash V, Gnirke A et al: ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth. PLoS Biol 2009, 7(12):e1000256.
100. Hayward A, Ghazal A, Andersson G, Andersson L, Jern P: ZBED evolution: repeated utilization of DNA transposons as regulators of diverse host functions. PLoS One 2013, 8(3):e59940.
101. Jones PG, VanBogelen RA, Neidhardt FC: Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 1987, 169(5):2092-2095.
102. Karlson D, Imai R: Conservation of the cold shock domain protein family in plants. Plant Physiol 2003, 131(1):12-15.
103. Stros M, Launholt D, Grasser KD: The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins. Cell Mol Life Sci 2007, 64(19-20):2590-2606.
104. Reeves R: Structure and function of the HMGI(Y) family of architectural transcription factors. Environ Health Perspect 2000, 108 Suppl 5:803-809.
105. Webster CI, Packman LC, Pwee KH, Gray JC: High mobility group proteins HMG-1 and HMG-I/Y bind to a positive regulatory region of the pea plastocyanin gene promoter. Plant J 1997, 11(4):703-715.
106. Zhao J, Favero DS, Peng H, Neff MM: Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain. Proc Natl Acad Sci U S A 2013, 110(48):E4688-4697.
107. Wu L, Wu H, Ma L, Sangiorgi F, Wu N, Bell JR, Lyons GE, Maxson R: Miz1, a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA. Mech Dev 1997, 65(1-2):3-17.
108. Consortium GO: Gene Ontology annotations and resources. Nucleic acids research 2013, 41(D1):D530-D535.
109. Monaco M, Sen T, Ren L, Dharmawardhana P, Schaeffer M, Amarasinghe V, Thomason J, Harper E, Naithani S, Gardiner J: MaizeCyc: Metabolic networks in maize. In: Plant and Animal Genome Conference: 2012; 2012: 100-110.
110. Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M: mapman: a user‐driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal 2004, 37(6):914-939.
111. Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S: Ensembl 2013. Nucleic acids research 2012:gks1236.
112. Tarailo‐Graovac M, Chen N: Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics 2009:4.10. 11-14.10. 14.
113. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society Series B (Methodological) 1995:289-300.
114. Heyndrickx KS, Van de Velde J, Wang C, Weigel D, Vandepoele K: A functional and evolutionary perspective on transcription factor binding in Arabidopsis thaliana. The Plant Cell 2014, 26(10):3894-3910.
115. Lin Z, Wu W-S, Liang H, Woo Y, Li W-H: The spatial distribution of cis regulatory elements in yeast promoters and its implications for transcriptional regulation. BMC genomics 2010, 11(1):581.
116. Yu C-P, Lin J-J, Li W-H: Positional distribution of transcription factor binding sites in Arabidopsis thaliana. Scientific reports 2016, 6.
117. Schnable JC, Freeling M, Lyons E: Genome-wide analysis of syntenic gene deletion in the grasses. Genome biology and evolution 2012, 4(3):265-277.
118. Grant CE, Bailey TL, Noble WS: FIMO: scanning for occurrences of a given motif. Bioinformatics 2011, 27(7):1017-1018.