研究生: |
林逸婕 Lin, Yi Chieh |
---|---|
論文名稱: |
藉由蛋白質體學分析子宮頸癌 與轉移相關之生物標記分子 Proteomic Analysis of Metastatic Biomarkers in Cervical Cancer |
指導教授: |
詹鴻霖
Chan, Hong Lin |
口試委員: |
王浩文
Wang, Hao-Ven 周秀專 Chou, Hsiu-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 轉移 、子宮頸癌 、PGRMC1 、蛋白質體學 |
外文關鍵詞: | metastasis, cervical cancer, PGRMC1, proteomics |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據最新台灣衛生署102年統計,國人死大死因榜首為惡性腫瘤,而子宮頸癌位居於女性癌症中第七位。而根據WHO之2011年統計子宮頸癌為女性癌症中發生率第三高之癌症,每年約有530,000新診斷子宮頸癌之個案,且一半會因此而死亡。癌症死亡率如此高之原因主要由於癌症組織除了會在原部位發展外,到晚期會進行遠端轉移至其他維生器官如肝、腦、肺等等,並極有可能造成病患死亡。而子宮頸癌早期之五年存活率相當高,但當轉移一旦發生時,五年存活率變大幅降低。因此,在本論文研究中將具有不同轉移能力之子宮頸癌細胞株利用蛋白質體學之方式,探討轉移相關機制以及找到轉移相關之生物標記分子。
在本實驗中我們利用相同基因背景之HeLa與較具有侵襲能力之HeLa-I5做研究並希望找出具有潛力之轉移相關之蛋白。我們利用二維差異電泳(2D-DIGE)、基質輔助雷射脫附游離飛行時間質譜儀(MALDI-TOF MS)找出差異之蛋白質。在結果中共鑑定出68個蛋白質具有差異,並利用西方點墨法(western blot)驗證。
在這些差異蛋白質中,我們選出一個較有潛力之蛋白-progesterone receptor membrane component1(PGRMC1)做後續實驗。並利用核醣核酸干擾技術(RNAi)使PGRMC1基因沉默。我們利用Transwell migration、傷口癒合實驗來觀察其蛋白對細胞移動能力之影響;Transwell invasion觀察細胞對細胞侵襲能力之影響,驗結果可以得知,PGRMC1對於子宮頸癌細胞之移動、侵襲能力以及對於細胞增生的速度有正面影響。本實驗利用蛋白質體學分析法找出在子宮頸癌轉移具有差異之蛋白質,並找出許多參與癌細胞侵入與轉移相關之潛力蛋白如PGRMC1,並希望能提供子宮頸癌與轉移相關的生物標記分子。
In Taiwan, Cervical cancer (CC) is the 7th leading cause of death in female cancer. Moreover, according to the WHO's report in 2011, cervical cancer is the third highest cancer incidence in female, around 530,000 new cases of cervical cancer were diagnosed each year with high death rate. The reason for a high mortality of cervical cancer is mainly due to cancer metastasis. When cervical cancer is diagnosed in early stage, the five-year survival rate is very high, but once metastasis occurs, the five-year survival rate reduced significantly. Thus, to manage cervical cancer, finding metastasis biomarkers and understanding the mechanisms are critical. In our current study, we used a pair of cervical adenocarcinoma cell lines, HeLa and its invasive partner, HeLa-I5, as a model system to examine invasive mechanism and find out the potential cellular targets associated with metastasis. We use two-dimensional differential gel electrophoresis difference (2D-DIGE), matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify differentially expressed proteins between HeLa and HeLa-I5. Our proteomics study revealed that 68 proteins show significant difference between the two lines and some of the identified proteins have been validated through immunoblotting. Further study by using RNA interference (RNAi) technique, we found progesterone receptor membrane component1 (PGRMC1) protein is a key player in response to cervical cancer invasion, migration and proliferation. Our data demonstrated that the invasive ability and the migration ability decreased for 2-fold and 1.7-fold, respectively, in the process of PGRMC1 knockdown. To sum up, PGRMC1 has been evidenced to modulate cervical cancer migration, invasion and proliferation. Our data also provided useful diagnostic markers and therapeutic candidates for the treatment of cervical cancer invasion and migration.
1 Liu, S., Semenciw, R. & Mao, Y. Cervical cancer: the increasing incidence of adenocarcinoma and adenosquamous carcinoma in younger women. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne 164, 1151-1152 (2001).
2 Williams, N. L., Werner, T. L., Jarboe, E. A. & Gaffney, D. K. Adenocarcinoma of the cervix: should we treat it differently? Current oncology reports 17, 17, doi:10.1007/s11912-015-0440-6 (2015).
3 Freire-de-Lima, L. Sweet and sour: the impact of differential glycosylation in cancer cells undergoing epithelial-mesenchymal transition. Frontiers in oncology 4, 59, doi:10.3389/fonc.2014.00059 (2014).
4 Yates, J. R., 3rd. Mass spectrometry and the age of the proteome. Journal of mass spectrometry : JMS 33, 1-19, doi:10.1002/(SICI)1096-9888(199801)33:1<1::AID-JMS624>3.0.CO;2-9 (1998).
5 Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860-921, doi:10.1038/35057062 (2001).
6 Venter, J. C. et al. The sequence of the human genome. Science 291, 1304-1351, doi:10.1126/science.1058040 (2001).
7 Edman, P. A method for the determination of amino acid sequence in peptides. Archives of biochemistry 22, 475 (1949).
8 Lindenberger, M., Kjellberg, M., Karlsson, E. & Wranne, B. Pericardiocentesis guided by 2-D echocardiography: the method of choice for treatment of pericardial effusion. Journal of internal medicine 253, 411-417 (2003).
9 Herbert, T. P., Brierley, I. & Brown, T. D. Identification of a protein linked to the genomic and subgenomic mRNAs of feline calicivirus and its role in translation. The Journal of general virology 78 ( Pt 5), 1033-1040 (1997).
10 Gorg, A., Weiss, W. & Dunn, M. J. Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 3665-3685, doi:10.1002/pmic.200401031 (2004).
11 Hirano, H. [Two-dimensional electrophoresis and proteomics]. Seikagaku. The Journal of Japanese Biochemical Society 76, 1320-1327 (2004).
12 Zimny-Arndt, U., Schmid, M., Ackermann, R. & Jungblut, P. R. Classical proteomics: two-dimensional electrophoresis/MALDI mass spectrometry. Methods in molecular biology 492, 65-91, doi:10.1007/978-1-59745-493-3_4 (2009).
13 Koenig, R., Stegemann, H., Francksen, H. & Paul, H. L. Protein subunits in the potato virus X group. Determination of the molecular weights by polyacrylamide electrophoresis. Biochimica et biophysica acta 207, 184-189 (1970).
14 O'Farrell, P. H. High resolution two-dimensional electrophoresis of proteins. The Journal of biological chemistry 250, 4007-4021 (1975).
15 Svensson, S. A. Retention of labelled phosphate in normal chicks on different feeds and in normal and hormonally caponized cockerels. Nature 193, 796 (1962).
16 Raymond, S. & Weintraub, L. Acrylamide gel as a supporting medium for zone electrophoresis. Science 130, 711 (1959).
17 Shapiro, A. L., Vinuela, E. & Maizel, J. V., Jr. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochemical and biophysical research communications 28, 815-820 (1967).
18 Kondo, T. & Hirohashi, S. Application of 2D-DIGE in cancer proteomics toward personalized medicine. Methods in molecular biology 577, 135-154, doi:10.1007/978-1-60761-232-2_11 (2009).
19 Timms, J. F. & Cramer, R. Difference gel electrophoresis. Proteomics 8, 4886-4897, doi:10.1002/pmic.200800298 (2008).
20 Westermeier, R. & Scheibe, B. Difference gel electrophoresis based on lys/cys tagging. Methods in molecular biology 424, 73-85, doi:10.1007/978-1-60327-064-9_7 (2008).
21 Swatton, J. E., Prabakaran, S., Karp, N. A., Lilley, K. S. & Bahn, S. Protein profiling of human postmortem brain using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE). Molecular psychiatry 9, 128-143, doi:10.1038/sj.mp.4001475 (2004).
22 Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64-71 (1989).
23 Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical chemistry 60, 2299-2301 (1988).
24 Pappin, D. J., Hojrup, P. & Bleasby, A. J. Rapid identification of proteins by peptide-mass fingerprinting. Current biology : CB 3, 327-332 (1993).
25 Henzel, W. J. et al. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proceedings of the National Academy of Sciences of the United States of America 90, 5011-5015 (1993).
26 Jonscher, K., Currie, G., McCormack, A. L. & Yates, J. R., 3rd. Matrix-assisted laser desorption of peptides and proteins on a quadrupole ion trap mass spectrometer. Rapid communications in mass spectrometry : RCM 7, 20-26, doi:10.1002/rcm.1290070106 (1993).
27 James, P., Quadroni, M., Carafoli, E. & Gonnet, G. Protein identification by mass profile fingerprinting. Biochemical and biophysical research communications 195, 58-64, doi:10.1006/bbrc.1993.2009 (1993).
28 Wasinger, V. C. et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16, 1090-1094 (1995).
29 Vogl, T., Roth, J., Sorg, C., Hillenkamp, F. & Strupat, K. Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 detected by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry. Journal of the American Society for Mass Spectrometry 10, 1124-1130 (1999).
30 Crudden, G., Chitti, R. E. & Craven, R. J. Hpr6 (heme-1 domain protein) regulates the susceptibility of cancer cells to chemotherapeutic drugs. The Journal of pharmacology and experimental therapeutics 316, 448-455, doi:10.1124/jpet.105.094631 (2006).
31 Ghosh, K. et al. Spectroscopic and biochemical characterization of heme binding to yeast Dap1p and mouse PGRMC1p. Biochemistry 44, 16729-16736, doi:10.1021/bi0511585 (2005).
32 Hughes, A. L. et al. Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell metabolism 5, 143-149, doi:10.1016/j.cmet.2006.12.009 (2007).
33 Min, L. et al. Characterization of the adrenal-specific antigen IZA (inner zone antigen) and its role in the steroidogenesis. Molecular and cellular endocrinology 215, 143-148, doi:10.1016/j.mce.2003.11.025 (2004).
34 Difilippantonio, S. et al. Gene expression profiles in human non-small and small-cell lung cancers. European journal of cancer 39, 1936-1947 (2003).
35 Neubauer, H. et al. Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1. Breast cancer research : BCR 10, R85, doi:10.1186/bcr2155 (2008).
36 Peluso, J. J., Liu, X., Saunders, M. M., Claffey, K. P. & Phoenix, K. Regulation of ovarian cancer cell viability and sensitivity to cisplatin by progesterone receptor membrane component-1. The Journal of clinical endocrinology and metabolism 93, 1592-1599, doi:10.1210/jc.2007-2771 (2008).
37 Peluso, J. J., Gawkowska, A., Liu, X., Shioda, T. & Pru, J. K. Progesterone receptor membrane component-1 regulates the development and Cisplatin sensitivity of human ovarian tumors in athymic nude mice. Endocrinology 150, 4846-4854, doi:10.1210/en.2009-0730 (2009).
38 Hand, R. A. & Craven, R. J. Hpr6.6 protein mediates cell death from oxidative damage in MCF-7 human breast cancer cells. Journal of cellular biochemistry 90, 534-547, doi:10.1002/jcb.10648 (2003).
39 Zhu, X. et al. Progesterone protects ovarian cancer cells from cisplatin-induced inhibitory effects through progesterone receptor membrane component 1/2 as well as AKT signaling. Oncology reports 30, 2488-2494, doi:10.3892/or.2013.2680 (2013).
40 Ji, S., Wu, A. & Yang, H. [Expression of progesterone receptor membrane component-1 is associated with the malignant phenotypes of breast cancer]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University 32, 635-638 (2012).
41 Vishwanatha, J. K., Chiang, Y., Kumble, K. D., Hollingsworth, M. A. & Pour, P. M. Enhanced expression of annexin II in human pancreatic carcinoma cells and primary pancreatic cancers. Carcinogenesis 14, 2575-2579 (1993).
42 Sharma, M. R., Koltowski, L., Ownbey, R. T., Tuszynski, G. P. & Sharma, M. C. Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Experimental and molecular pathology 81, 146-156, doi:10.1016/j.yexmp.2006.03.003 (2006).
43 Mohammad, H. S. et al. Annexin A2 expression and phosphorylation are up-regulated in hepatocellular carcinoma. International journal of oncology 33, 1157-1163 (2008).
44 Inokuchi, J. et al. Annexin A2 positively contributes to the malignant phenotype and secretion of IL-6 in DU145 prostate cancer cells. International journal of cancer. Journal international du cancer 124, 68-74, doi:10.1002/ijc.23928 (2009).
45 Diaz, V. M., Hurtado, M., Thomson, T. M., Reventos, J. & Paciucci, R. Specific interaction of tissue-type plasminogen activator (t-PA) with annexin II on the membrane of pancreatic cancer cells activates plasminogen and promotes invasion in vitro. Gut 53, 993-1000 (2004).
46 Shiozawa, Y. et al. Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. Journal of cellular biochemistry 105, 370-380, doi:10.1002/jcb.21835 (2008).
47 Lokman, N. A., Ween, M. P., Oehler, M. K. & Ricciardelli, C. The role of annexin A2 in tumorigenesis and cancer progression. Cancer microenvironment : official journal of the International Cancer Microenvironment Society 4, 199-208, doi:10.1007/s12307-011-0064-9 (2011).
48 Semov, A. et al. Metastasis-associated protein S100A4 induces angiogenesis through interaction with Annexin II and accelerated plasmin formation. The Journal of biological chemistry 280, 20833-20841, doi:10.1074/jbc.M412653200 (2005).
49 Boye, K. & Maelandsmo, G. M. S100A4 and metastasis: a small actor playing many roles. The American journal of pathology 176, 528-535, doi:10.2353/ajpath.2010.090526 (2010).