簡易檢索 / 詳目顯示

研究生: 李幸菡
Li, Hsing-Han
論文名稱: C型凝集素連結埃及斑蚊的免疫及生殖過程
C-Type Lectins Link Immunological and Reproductive Processes in Aedes aegypti
指導教授: 陳俊宏
Chen, Chun-Hong
汪宏達
Wang, Horng-Dar
口試委員: 詹智強
Chan, Chih-Chiang
吳夙欽
Wu, Suh-Chin
許惠真
Hsu, Hwei-Jan
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 128
中文關鍵詞: 埃及斑蚊C型凝集素蟲媒病毒免疫反應生殖細胞繁殖資源權衡
外文關鍵詞: Aedes aegypti, C-type lectin, arbovirus, immune response, germline, reproduction, resource trade-off
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • C型凝集素家族成員可能參與了蚊子的免疫反應與生殖能力之間的生理平權過程,這種平權可能是由於資源不足而引起的,並且可能對潛在的生殖力產生重大影響。我們使用CRISPR / Cas9為C型凝集素家族的一個成員(GCTL-3) 建立了一純合子敲除的埃及伊蚊(Aedes aegypti)品系,用於研究GCTL-3 在蟲媒病毒感染及繁殖方面的代價之相關免疫反應與平衡作用。我們發現JAK / STAT,IMD,Toll和AMPs免疫途徑的多種成員被正向調控,並且改變了GCTL-3-/- 突變體的腸道共生菌群數量。與控制組相比,突變體還顯示出降低了DENV-2感染率,這可能是由於這些免疫途徑改變所致。
    另一方面,突變體的壽命也比對照組短得多,並且生殖能力降低,這表示將資源轉移至免疫途徑可能導致生殖潛力降低。最後,我們發現dsRNA沉默了AMPs途徑的兩個特定成員,即Attacin和Gambicin,恢復了部分GCTL-3-/- 雌蚊的生育力和繁殖力,暗示這些成分對於依賴性C型凝集素在資源分配的過程中是極有影響力的。
    蚊蟲資源分配策略不僅會影響蚊子的傳染性,並且還會影響產卵能力,因此對於媒介控制會產生重大影響。對其他C型凝集素家族成員作用的研究將進一步提高我們對免疫和生殖資源權衡的分子和遺傳機制的了解。


    C-type lectin family members may be involved in the processes which determine resource distribution trade-offs between immune response and reproductive capability in mosquitoes. These trade-offs typically can arise due to insufficient resource availability, and can have significant impacts on reproductive potential. We used CRISPR/Cas9 to establish a homozygous KO Aedes aegypti line for one member of the C-type lectin family (GCTL-3) in order to investigate its’ role in balancing the costs associated with immune responses to arboviral infection and reproduction.
    We found upregulation of multiple components of the JAK/STAT, IMD, Toll and AMPs immunological pathways and altered gut commensal microbiota populations in GCTL-3-/- mutants. Mutants also showed reductions in DENV-2 infection rates compared to controls, potentially due to these altered immune pathways. On the other hand, mutants also had significantly shorter lifespans than controls and diminished reproductive capability, suggesting that the diversion of resources to immune pathways may result in reduced reproductive potential. Finally, we found that dsRNA silencing of two specific components of the AMPs pathway, Attacin and Gambicin, led to a partial restoration of fertility and fecundity in GCTL-3-/- mutant females, implicating these components as highly influential components of C-type lectin dependent resource allocation processes.
    Mosquito resource allocation strategies can have significant effects on vector control efforts as they influence not only mosquito infectivity but also egg laying capacity. Investigation of the role of other C-type lectin family members will further improve our knowledge of the molecular and genetic mechanisms underlying immunological and reproductive resource trade-offs.

    致謝 ii Abbreviations ix 中文摘要 1 Abstract 2 Introduction 4 Background 6  Entomology of Aedes mosquitoes 6  Epidemiology of Dengue 7  Mosquito immune response pathways 8  Reproduction–immunity trade-offs in insects 9  Mosquito C-type lectins 10  C-type lectins play a role in mosquito gut microbiome homeostasis 11 Materials and Methods 13  Mosquito rearing 13  Generation of mutant mosquitoes 13  Plasmid assembly 14  Single guide RNA design 16  PCR and sequencing 17  Characterization of insertion site by digital droplet PCR 18  C-type lectin expression analysis 18  DENV/ ZIKV infection of mosquitoes and virus titer determination 19  Host seeking behavior assay 20  Mosquito physiological measurements; body weight, body length, and wing length 20  16S amplicon sequencing 20  RNA extraction and reverse transcription polymerase chain reaction (RT-PCR) 21  Mosquito fertility assay 21  Mosquito survival rates following exposure to S. marcescens 22  Immunostaining of A. aegypti ovaries and midgut 23  dsRNA synthesis and injection 24  Follicle analysis 24  Statistical analysis 25 Results 27  Generation of GCTL-3-/- mosquitoes by CRISPR/Cas9 27  GCTL-3-/- mosquitoes exhibited a reduced infection rate for DENV, but not ZIKV 28  GCTL-3 mutation resulted in reduced commensal microbiota populations in the mosquito midgut 29  GCTL-3-/- mosquitoes showed upregulation of JAK/STAT, IMD, Toll and AMPs signaling pathways 31  GCTL-3 knock-out resulted in defects in mosquito fertility and fecundity 33  Loss of GCTL-3 in the mosquito midgut activated apoptotic signaling pathways and resulted in germline abnormalities in mutant ovaries 34  Attacin and Gambicin knock-down partially rescued reductions in GCTL-3-/- fertility and fecundity 37 Discussion 39 Summary 49 Article Information 50 References 51 Figures 59  Figure 1. Generation of GCTL-3-/- mosquitoes by CRISPR/Cas9. 59  Figure 2. Verification of GCTL-3-/+ mosquitoes by digital droplet PCR (ddPCR). 60  Figure 3. Five potential sgRNA target sites for Aedes aegypti GCTL-3. 61  Figure 4. Identification of recombination site in GCTL-3-/- mosquitoes via PCR and sequencing. 62  Figure 5. Outcrossing of line for five generations to establish GCTL-3-/- mosquitoes. 64  Figure 6. Confirmation of GCTL-3-/- mosquitoes by reverse transcription. 65  Figure 7. Fitness of GCTL-3-/+ mosquitoes. 67  Figure 8. Host seeking behavior of GCTL-3-/+ mosquitoes. 68  Figure 9. Lifespan of GCTL-3-/+ mosquitoes. 69  Figure 10. Reproductive phenotyping of GCTL-3-/+ mosquitoes. 70  Figure 11. DENV-2 infection rate was reduced in GCTL-3-/- mosquitoes seven days post-blood meal. 71  Figure 12. DENV-2 virus replication was not significantly affected in GCTL-3-/- mosquitoes seven days after thoracic injection. 72  Figure 13. ZIKV infection rate was not significantly affected in GCTL-3-/- mosquitoes seven days post-blood meal. 73  Figure 14. Reduced colonization of 74  Figure 15. Relative expression of different midgut microbiota populations in 76  Figure 16. Reduced abundance of gut bacteria in GCTL-3-/- mosquitoes midgut. 77  Figure 17. GCTL-3-/- mosquitoes were found to have fewer bacteria than controls. 78  Figure 18. Significantly differences in mosquito survival rate between GCTL-3-/- mosquitoes and controls when exposed to S. marcescens. 80  Figure 19. Relative expression levels of lectins in female Aedes aegypti midgut. 81  Figure 20. Knock-out of GCTL-3 causes a change in the regulation of JAK/STAT, IMD and Toll signaling pathway genes. 82  Figure 21. Knock-out of GCTL-3 causes a change in the regulation of AMP genes. 84  Figure 22. GCTL-3-/- mosquitoes show reduced oviposition and egg hatch rates compared to controls. 85  Figure 23. Embryo melanization and abnormally-shaped ovarioles in GCTL3-/- mosquitoes. 86  Figure 24. GCTL-3 knock-out caused defects in mosquito oviposition that were not PPO3-dependent. 87  Figure 25. Both male and female GCTL-3-/- mosquitoes show reduced fecundity compared to controls. 88  Figure 26. GCTL-3-/- mosquitoes show altered physiology as compared to controls. 89  Figure 27. GCTL-3-/- mosquitoes show no change in host seeking behavior compared to controls. 91  Figure 28. GCTL-3-/- mosquitoes show shortened lifespans as compared to controls. 92  Figure 29. GCTL-3-/- ovary development is defective as compared to controls. 93  Figure 30. VASA expression in GCTL-3-/- adult ovaries. 94  Figure 32. VASA expression in GCTL-3-/- post-blood fed ovaries. 96  Figure 33. Caspase-3 expression levels increased in GCTL-3-/- mosquito ovaries post blood meal. 98  Figure 34. VASA expression in GCTL-3-/- testes. 100  Figure 35. Caspase-3 expression levels increased in GCTL-3-/- mosquitoes. 101  Figure 36. Defects in GCTL-3-/- follicles. 102  Figure 37. The extent of localization is reduced in GCTL-3-/- follicular cells. 103  Figure 38, see also Table 7. Cleavage Caspase-3 expression in GCTL-3-/- midguts. 104  Figure 39. Attacin knock-down partially rescued reductions in GCTL-3-/- fertility and fecundity. 105  Figure 40. Gambicin knock-down partially rescued reductions in GCTL-3-/- fertility and fecundity. 107  Figure 41. GCTL-3 expression level in female and male controls. 109  Figure 42. GCTL-3 regulates virus pathogenesis and germline development. 110 Tables 111  Table 1, see also Figure 1A. Primer designs for plasmid assembly 111  Table 2, see also Figure 1B and Figure S2. Efficiency of microinjection for generation of germline mutants. 112  Table 3, see also Figure 1C to 1F. Primer designs for digital droplet PCR 113  Table 4, see also Figure S1B to S1F. Primer designs for PCR and sequencing 114  Table 5, see also Figure 3G. Survival data: Survival probabilities at 12 days after experiment start 115  Table 6, see also Figure S1I. Primer designs for C-type lectin real-time PCR analysis 116  Table 7, see also Figure 4A to 4E. Primer designs for reverse transcription PCR in JAK/STAT, Toll, IMD, autophagy, RNAi, and apoptosis pathways 117  Table 8, see also Figure 4. ANOVA values for comparisons between controls and mutants for immune pathway components 118  Table 9, see also Figure 7. Summary of germline phenotypes. Descriptions of follicles identified in both control and mutant mosquitoes, including phenotype and % of follicles for each type identified in the two genotypes. 125  Table 10, see also Figure 8. Primer designs for dsRNA 126  Table 11, see also Figure 8. Results of two-way ANOVA on dsRNA experiment. Significant differences between groups are bolded 127

    A S Raikhel, M.R.B., X Belles (2005). Hormonal Control of Reproductive Processes.
    Adelman, Z.N., and Myles, K.M. (2018). The C-Type Lectin Domain Gene Family in Aedes aegypti and Their Role in Arbovirus Infection. Viruses 10.
    Anderson, M.A., Gross, T.L., Myles, K.M., and Adelman, Z.N. (2010). Validation of novel promoter sequences derived from two endogenous ubiquitin genes in transgenic Aedes aegypti. Insect Mol Biol 19, 441-449.
    Anglero-Rodriguez, Y.I., MacLeod, H.J., Kang, S., Carlson, J.S., Jupatanakul, N., and Dimopoulos, G. (2017). Aedes aegypti Molecular Responses to Zika Virus: Modulation of Infection by the Toll and Jak/Stat Immune Pathways and Virus Host Factors. Front Microbiol 8, 2050.
    Benelli, G., and Mehlhorn, H. (2016). Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115, 1747-1754.
    Bertani, G. (2004). Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 186, 595-600.
    Brady, O.J., Gething, P.W., Bhatt, S., Messina, J.P., Brownstein, J.S., Hoen, A.G., Moyes, C.L., Farlow, A.W., Scott, T.W., and Hay, S.I. (2012). Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 6, e1760.
    Buchman, A., Gamez, S., Li, M., Antoshechkin, I., Li, H.H., Wang, H.W., Chen, C.H., Klein, M.J., Duchemin, J.B., Paradkar, P.N., et al. (2019). Engineered resistance to Zika virus in transgenic Aedes aegypti expressing a polycistronic cluster of synthetic small RNAs. Proc Natl Acad Sci U S A 116, 3656-3661.
    Camaioni, A., Klinger, F.G., Campagnolo, L., and Salustri, A. (2018). The Influence of Pentraxin 3 on the Ovarian Function and Its Impact on Fertility. Front Immunol 9, 2808.
    Caraballo, H., and King, K. (2014). Emergency department management of mosquito-borne illness: malaria, dengue, and West Nile virus. Emerg Med Pract 16, 1-23; quiz 23-24.
    Castrillon, D.H., Quade, B.J., Wang, T.Y., Quigley, C., and Crum, C.P. (2000). The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci U S A 97, 9585-9590.
    Chang, C.H., Liu, Y.T., Weng, S.C., Chen, I.Y., Tsao, P.N., and Shiao, S.H. (2018). The non-canonical Notch signaling is essential for the control of fertility in Aedes aegypti. PLoS Negl Trop Dis 12, e0006307.
    Cheng, G., Cox, J., Wang, P., Krishnan, M.N., Dai, J., Qian, F., Anderson, J.F., and Fikrig, E. (2010). A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell 142, 714-725.
    Cheng, G., Liu, Y., Wang, P., and Xiao, X. (2016). Mosquito Defense Strategies against Viral Infection. Trends Parasitol 32, 177-186.
    Dambuza, I.M., and Brown, G.D. (2015). C-type lectins in immunity: recent developments. Curr Opin Immunol 32, 21-27.
    Das, S., Garver, L., and Dimopoulos, G. (2007). Protocol for mosquito rearing (A. gambiae). J Vis Exp, 221.
    Delhaye, J., Aletti, C., Glaizot, O., and Christe, P. (2016). Exposure of the mosquito vector Culex pipiens to the malaria parasite Plasmodium relictum: effect of infected blood intake on immune and antioxidant defences, fecundity and survival. Parasit Vectors 9, 616.
    DiAngelo, J.R., Bland, M.L., Bambina, S., Cherry, S., and Birnbaum, M.J. (2009). The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proc Natl Acad Sci U S A 106, 20853-20858.
    Elgart, M., Stern, S., Salton, O., Gnainsky, Y., Heifetz, Y., and Soen, Y. (2016). Impact of gut microbiota on the fly's germ line. Nat Commun 7.
    Flatt, T., and Kawecki, T.J. (2007). Juvenile hormone as a regulator of the trade-off between reproduction and life span in Drosophila melanogaster. Evolution 61, 1980-1991.
    Flatt, T., Min, K.J., D'Alterio, C., Villa-Cuesta, E., Cumbers, J., Lehmann, R., Jones, D.L., and Tatar, M. (2008). Drosophila germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci U S A 105, 6368-6373.
    Fontes-Garfias, C.R., Shan, C., Luo, H., Muruato, A.E., Medeiros, D.B.A., Mays, E., Xie, X., Zou, J., Roundy, C.M., Wakamiya, M., et al. (2017). Functional Analysis of Glycosylation of Zika Virus Envelope Protein. Cell Rep 21, 1180-1190.
    Georgel, P., Naitza, S., Kappler, C., Ferrandon, D., Zachary, D., Swimmer, C., Kopczynski, C., Duyk, G., Reichhart, J.M., and Hoffmann, J.A. (2001). Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev Cell 1, 503-514.
    Grimont, P.A., and Grimont, F. (1978). The genus Serratia. Annu Rev Microbiol 32, 221-248.
    Gustafson, E.A., and Wessel, G.M. (2010). Vasa genes: emerging roles in the germ line and in multipotent cells. Bioessays 32, 626-637.
    Guzman, A., and Isturiz, R.E. (2010). Update on the global spread of dengue. Int J Antimicrob Agents 36 Suppl 1, S40-42.
    Hall, A.B., Basu, S., Jiang, X., Qi, Y., Timoshevskiy, V.A., Biedler, J.K., Sharakhova, M.V., Elahi, R., Anderson, M.A., Chen, X.G., et al. (2015). SEX DETERMINATION. A male-determining factor in the mosquito Aedes aegypti. Science 348, 1268-1270.
    Hurd, A.M.A.S.L.B.R.M.H. (2002). The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos 97.
    Iseli, C., Ambrosini, G., Bucher, P., and Jongeneel, C.V. (2007). Indexing strategies for rapid searches of short words in genome sequences. PLoS One 2, e579.
    Johansson, M.A., Mier-y-Teran-Romero, L., Reefhuis, J., Gilboa, S.M., and Hills, S.L. (2016). Zika and the Risk of Microcephaly. N Engl J Med 375, 1-4.
    Jupatanakul, N., Sim, S., Anglero-Rodriguez, Y.I., Souza-Neto, J., Das, S., Poti, K.E., Rossi, S.L., Bergren, N., Vasilakis, N., and Dimopoulos, G. (2017). Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus. PLoS Negl Trop Dis 11, e0005187.
    Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and Haussler, D. (2002). The human genome browser at UCSC. Genome Res 12, 996-1006.
    Kingsolver, M.B., Huang, Z., and Hardy, R.W. (2013). Insect antiviral innate immunity: pathways, effectors, and connections. J Mol Biol 425, 4921-4936.
    Kistler, K.E., Vosshall, L.B., and Matthews, B.J. (2015). Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep 11, 51-60.
    Kondo, S., and Ueda, R. (2013). Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195, 715-721.
    Kraemer, M.U.G., Reiner, R.C., Jr., Brady, O.J., Messina, J.P., Gilbert, M., Pigott, D.M., Yi, D., Johnson, K., Earl, L., Marczak, L.B., et al. (2019). Publisher Correction: Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol 4, 901.
    Kumar, A., Srivastava, P., Sirisena, P., Dubey, S.K., Kumar, R., Shrinet, J., and Sunil, S. (2018). Mosquito Innate Immunity. Insects 9.
    Kurz, C.L., Chauvet, S., Andres, E., Aurouze, M., Vallet, I., Michel, G.P., Uh, M., Celli, J., Filloux, A., De Bentzmann, S., et al. (2003). Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. Embo J 22, 1451-1460.
    Kyrou, K., Hammond, A.M., Galizi, R., Kranjc, N., Burt, A., Beaghton, A.K., Nolan, T., and Crisanti, A. (2018). A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol 36, 1062-1066.
    Lee, W.S., Webster, J.A., Madzokere, E.T., Stephenson, E.B., and Herrero, L.J. (2019). Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection. Parasit Vectors 12, 165.
    Leitao-Goncalves, R., Carvalho-Santos, Z., Francisco, A.P., Fioreze, G.T., Anjos, M., Baltazar, C., Elias, A.P., Itskov, P.M., Piper, M.D.W., and Ribeiro, C. (2017). Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol 15, e2000862.
    Li, H.H., Cai, Y., Li, J.C., Su, M.P., Liu, W.L., Cheng, L., Chou, S.J., Yu, G.Y., Wang, H.D., and Chen, C.H. (2020). C-Type Lectins Link Immunological and Reproductive Processes in Aedes aegypti. iScience 23, 101486.
    Li, M., Bui, M., Yang, T., Bowman, C.S., White, B.J., and Akbari, O.S. (2017). Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector, Aedes aegypti. Proc Natl Acad Sci U S A 114, E10540-E10549.
    Liu, K., Qian, Y., Jung, Y.S., Zhou, B., Cao, R., Shen, T., Shao, D., Wei, J., Ma, Z., Chen, P., et al. (2017). mosGCTL-7, a C-Type Lectin Protein, Mediates Japanese Encephalitis Virus Infection in Mosquitoes. J Virol 91.
    Liu, L., Dai, J., Zhao, Y.O., Narasimhan, S., Yang, Y., Zhang, L., and Fikrig, E. (2012). Ixodes scapularis JAK-STAT pathway regulates tick antimicrobial peptides, thereby controlling the agent of human granulocytic anaplasmosis. J Infect Dis 206, 1233-1241.
    Liu, T., Yang, W.Q., Xie, Y.G., Liu, P.W., Xie, L.H., Lin, F., Li, C.Y., Gu, J.B., Wu, K., Yan, G.Y., et al. (2018). Construction of an efficient genomic editing system with CRISPR/Cas9 in the vector mosquito Aedes albopictus. Insect Sci.
    Liu, Y., Zhang, F., Liu, J., Xiao, X., Zhang, S., Qin, C., Xiang, Y., Wang, P., and Cheng, G. (2014). Transmission-blocking antibodies against mosquito C-type lectins for dengue prevention. PLoS Pathog 10, e1003931.
    Lobo, N.F., Clayton, J.R., Fraser, M.J., Kafatos, F.C., and Collins, F.H. (2006). High efficiency germ-line transformation of mosquitoes. Nat Protoc 1, 1312-1317.
    Luo, L., Wang, H., Fan, C., Liu, S., and Cai, Y. (2015). Wnt ligands regulate Tkv expression to constrain Dpp activity in the Drosophila ovarian stem cell niche. J Cell Biol 209, 595-608.
    Mazaika, E., and Homsy, J. (2014). Digital Droplet PCR: CNV Analysis and Other Applications. Curr Protoc Hum Genet 82, 7 24 21-13.
    McKean, K.A., Yourth, C.P., Lazzaro, B.P., and Clark, A.G. (2008). The evolutionary costs of immunological maintenance and deployment. BMC Evol Biol 8, 76.
    Miyashita, A., Lee, T.Y.M., McMillan, L.E., Easy, R., and Adamo, S.A. (2019). Immunity for nothing and the eggs for free: Apparent lack of both physiological trade-offs and terminal reproductive investment in female crickets (Gryllus texensis). PLoS One 14, e0209957.
    Mousson, L., Dauga, C., Garrigues, T., Schaffner, F., Vazeille, M., and Failloux, A.B. (2005). Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. Genet Res 86, 1-11.
    Nijole Jasinskiene, J.J., Anthony A. James (2007). Microinjection of A. aegypti Embryos to Obtain Transgenic Mosquitoes. In J Vis Exp.
    Pan, C.Y., Liu, W.L., Su, M.P., Chang, T.P., Ho, H.P., Shu, P.Y., Huang, J.J., Lin, L.J., and Chen, C.H. (2020). Epidemiological analysis of the Kaohsiung city strategy for dengue fever quarantine and epidemic prevention. BMC Infect Dis 20, 347.
    Pang, X., Xiao, X., Liu, Y., Zhang, R., Liu, J., Liu, Q., Wang, P., and Cheng, G. (2016). Mosquito C-type lectins maintain gut microbiome homeostasis. Nat Microbiol 1.
    Pascini, T.V., Ramalho-Ortigao, M., Ribeiro, J.M., Jacobs-Lorena, M., and Martins, G.F. (2020). Transcriptional profiling and physiological roles of Aedes aegypti spermathecal-related genes. BMC Genomics 21, 143.
    Patil, C.D., Patil, S.V., Salunke, B.K., and Salunkhe, R.B. (2011). Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitol Res 109, 1179-1187.
    Ramirez, J.L., Souza-Neto, J., Torres Cosme, R., Rovira, J., Ortiz, A., Pascale, J.M., and Dimopoulos, G. (2012). Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis 6, e1561.
    Raz, E. (2000). The function and regulation of vasa-like genes in germ-cell development. Genome Biol 1, REVIEWS1017.
    Rodgers, F.H., Gendrin, M., Wyer, C.A.S., and Christophides, G.K. (2017). Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes. PLoS Pathog 13, e1006391.
    Roth, A., Mercier, A., Lepers, C., Hoy, D., Duituturaga, S., Benyon, E., Guillaumot, L., and Souares, Y. (2014). Concurrent outbreaks of dengue, chikungunya and Zika virus infections - an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012-2014. Euro Surveill 19.
    Ruohola, H., Bremer, K.A., Baker, D., Swedlow, J.R., Jan, L.Y., and Jan, Y.N. (1991). Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila. Cell 66, 433-449.
    Schwenke, R.A., Lazzaro, B.P., and Wolfner, M.F. (2016). Reproduction-Immunity Trade-Offs in Insects. Annu Rev Entomol 61, 239-256.
    Shin, S.W., Zou, Z., and Raikhel, A.S. (2011). A new factor in the Aedes aegypti immune response: CLSP2 modulates melanization. EMBO Rep 12, 938-943.
    Simmons, L.W. (2011). Resource allocation trade-off between sperm quality and immunity in the field cricket, Teleogryllus oceanicus. Behavioral Ecology 23, 168–173.
    Sirohi, D., and Kuhn, R.J. (2017). Zika Virus Structure, Maturation, and Receptors. J Infect Dis 216, S935-S944.
    Sougoufara, S., Ottih, E.C., and Tripet, F. (2020). The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities. Parasit Vectors 13, 295.
    Souza-Neto, J.A., Powell, J.R., and Bonizzoni, M. (2019). Aedes aegypti vector competence studies: A review. Infect Genet Evol 67, 191-209.
    Spradling, A.C. (1993). Germline cysts: communes that work. Cell 72, 649-651.
    Thornberry, N.A., and Lazebnik, Y. (1998). Caspases: Enemies within. Science 281, 1312-1316.
    Wang, H., and Clem, R.J. (2011). The role of IAP antagonist proteins in the core apoptosis pathway of the mosquito disease vector Aedes aegypti. Apoptosis 16, 235-248.
    Wang, S., Dos-Santos, A.L.A., Huang, W., Liu, K.C., Oshaghi, M.A., Wei, G., Agre, P., and Jacobs-Lorena, M. (2017). Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 357, 1399-1402.
    Wang, S.F., Chang, K., Loh, E.W., Wang, W.H., Tseng, S.P., Lu, P.L., Chen, Y.H., and Chen, Y.A. (2016). Consecutive large dengue outbreaks in Taiwan in 2014-2015. Emerg Microbes Infect 5, e123.
    Wasilauskas, B.L., Floyd, J., and Roberts, T.R. (1974). Use of sodium polyanethol sulfonate in the preparation of 5 per cent sheep blood agar plates. Appl Microbiol 28, 91-94.
    Watanabe, A., Miyazawa, S., Kitami, M., Tabunoki, H., Ueda, K., and Sato, R. (2006). Characterization of a novel C-type lectin, Bombyx mori multibinding protein, from the B. mori hemolymph: mechanism of wide-range microorganism recognition and role in immunity. J Immunol 177, 4594-4604.
    Weaver, S.C., and Reisen, W.K. (2010). Present and future arboviral threats. Antiviral Res 85, 328-345.
    Wicker, C., Reichhart, J.M., Hoffmann, D., Hultmark, D., Samakovlis, C., and Hoffmann, J.A. (1990). Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J Biol Chem 265, 22493-22498.
    Wong, J., Stoddard, S.T., Astete, H., Morrison, A.C., and Scott, T.W. (2011). Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. PLoS Negl Trop Dis 5, e1015.
    Wu, P., Sun, P., Nie, K., Zhu, Y., Shi, M., Xiao, C., Liu, H., Liu, Q., Zhao, T., Chen, X., et al. (2019). A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses. Cell Host Microbe 25, 101-112 e105.
    Wurzer, W.J., Planz, O., Ehrhardt, C., Giner, M., Silberzahn, T., Pleschka, S., and Ludwig, S. (2003). Caspase 3 activation is essential for efficient influenza virus propagation. Embo J 22, 2717-2728.
    Xi, Z., Ramirez, J.L., and Dimopoulos, G. (2008). The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4, e1000098.
    Xiao, X., Liu, Y., Zhang, X., Wang, J., Li, Z., Pang, X., Wang, P., and Cheng, G. (2014). Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides. PLoS Pathog 10, e1004027.
    Xiao, X., Yang, L., Pang, X., Zhang, R., Zhu, Y., Wang, P., Gao, G., and Cheng, G. (2017). A Mesh-Duox pathway regulates homeostasis in the insect gut. Nat Microbiol 2, 17020.
    Xu, T., Caron, L.A., Fehon, R.G., and Artavanis-Tsakonas, S. (1992). The involvement of the Notch locus in Drosophila oogenesis. Development 115, 913-922.
    Yang, J., Schleicher, T.R., Dong, Y., Park, H.B., Lan, J., Cresswell, P., Crawford, J., Dimopoulos, G., and Fikrig, E. (2019). Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection. J Exp Med.
    Yen, P.S., James, A., Li, J.C., Chen, C.H., and Failloux, A.B. (2018). Synthetic miRNAs induce dual arboviral-resistance phenotypes in the vector mosquito Aedes aegypti. Commun Biol 1, 11.
    Yunger, E., Safra, M., Levi-Ferber, M., Haviv-Chesner, A., and Henis-Korenblit, S. (2017). Innate immunity mediated longevity and longevity induced by germ cell removal converge on the C-type lectin domain protein IRG-7. PLoS Genet 13, e1006577.
    Zhang, R., Zhu, Y., Pang, X., Xiao, X., Zhang, R., and Cheng, G. (2017). Regulation of Antimicrobial Peptides in Aedes aegypti Aag2 Cells. Front Cell Infect Microbiol 7, 22.
    Zou, Z., Shin, S.W., Alvarez, K.S., Kokoza, V., and Raikhel, A.S. (2010). Distinct melanization pathways in the mosquito Aedes aegypti. Immunity 32, 41-53.

    QR CODE