研究生: |
余如修 Ru-Siou Yu |
---|---|
論文名稱: |
強度調控放射治療之射束方位最佳選擇 Optimal Selection of Beam Orientations in Intensity Modulated Radiation Therapy |
指導教授: |
溫于平
Ue-Pyng Wen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 46 |
中文關鍵詞: | 射束角度 、劑量-體積限制 、劑量分佈 、等空間模式 |
外文關鍵詞: | Beam Orientation, Dose-volume Constraint, Dose Distribution, Equi-spaced Model |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
放射線為癌症治療中常見且相當重要的一種醫療方式,目前放射線治療新發展的技術為強度調控放射線治療(Intensity Modulated Radiation Therapy, IMRT),其調節放射劑量分佈,將高劑量集中於腫瘤,並減少正常組織之傷害。儘管目前放射線醫療的技術與設備已相當完善,但於放射治療計劃中,射束角度的選擇仍取決於醫學物理師的經驗或是直覺。
本篇論文的研究為在考量整體放射線射束角度下,針對射束結構進行最佳化的選擇。除了腫瘤及周遭組織必須滿足劑量限制外,劑量分佈也將納入考量,同時最佳化放射線射束角度結構及射束強度大小,並利用幾何空間角度的限制加快求解速度,以使射束角度選擇之規劃更貼近放射線醫療並符合實際需求。最後,與目前放射線醫療角度之規劃進行比較,本研究將提供較佳的角度決策,以做為醫學物理師角度規劃之參考。
Radiation therapy is a common and important treatment for some specific tumors in the treatment of cancer. At present, a new development of radiation therapy is being generated, namely, the intensity modulated radiation therapy (IMRT). IMRT modulate the intensity of the radiation beam to focus on a higher radiation dose to the tumor while minimizing radiation exposure to surrounding normal tissues. The technology and equipment of radiation therapy have already been quite developed at present. However, selecting appropriate beam orientations is manually completed by a planner according to his (her) experience and intuition in current clinical practice.
The purpose of this thesis is the optimal selection of the beam configuration by considering the beam orientation completely. Besides the radiation dose limit to the tumor and the adjacent organs needed to be satisfied, we take the dose distribution into consideration and optimize the beam configuration and beam intensity simultaneously. In addition, we accelerate the speed of optimization by the limits of the geometric spacing to make the treatment plan of selecting beam orientations meet radiation therapy in clinical. Furthermore, the proposed model compared with the equi-spaced model provides the optimal beam configuration to help physicists in decision-making.
[1] 彭汪嘉康。癌症治療的新思維。科學人雜誌,21,56-60,(民92)。
[2] 行政院衛生署衛生統計資訊網,2006。取自http://www.doh.gov.tw/statistic/。
[3] Chen, G. T. Y., Spelbring, D. R., Pelizzari, C. A., Balter, J. M., Myrianthopoulos, L. C., Vijayakumar, S. and Halpern, H., “The use of beam’s eye view volumetrics in the selection of non-coplanar radiation portals”, International Journal of Radiation Oncology Biology Physics, 23, 153-163(1992).
[4] Dai, J., Zhu, Y. and Ji, Q., “Optimizing beam weights and wedge filters with the concept of the super-omni wedge”, Medical Physics, 27, 2757-2762(2000).
[5] D’Souza, W. D., Meyer, R. R. and Shi, L., “Selection of beam orientations in intensity-modulated radiation therapy using single-beam indices and integer programming”, Physics in Medicine and Biology, 49, 3465-3481(2004).
[6] Ehrgott, M. and Johnston, R., “Optimisation of beam directions in intensity modulated radiation therapy planning”, OR Spectrum, 25, 251-264(2003).
[7] Faiz, M. K. and Roger, A. P., Treatment Planning in Radiation Oncology, Williams & Wilkins (1998).
[8] Grigorov, G. N., Chow, J. C. L., Grigorov, L., Jiang, R. and Barnett, R. B., “IMRT: Improvement in treatment planning efficiency using NTCP calculation independent of the dose-volume-histogram”, Medical Physics, 33, 1250-1258(2006).
[9] Goitein, M., Abrams, M., Rowell, D., Pollari, H. and Wiles, J., “Multidimensional treatment planning: II. Beam’s eye-view, back projection, and projection through CT sections”, International Journal of Radiation Oncology Biology Physics, 9, 789-797(1983).
[10] Lu, H. M., Kooy, H. M., Leber, Z. H. and Ledoux, R. J., “Optimized beam planning for linear accelerator-based stereotactic radiosurgery”, International Journal of Radiation Oncology Biology Physics, 39, 1183-1189(1997).
[11] Li, Y., Yao, D., Yao, J. and Chen, W., “A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning”, Physics in Medicine and Biology, 50, 3491-3514(2005).
[12] Li, Y., Yao, J. and Yao, D., “Automatic beam angle selection in IMRT planning using genetic algorithm”, Physics in Medicine and Biology, 49, 1915-1932(2004).
[13] Myrianthopoulos, L. C., Chen, G. T. Y., Vijayakumar, S., Halpern, H. J., Spelbring, D. R. and Pelizzari, C. A., “Beam’s eye view volumetrics: An aid in rapid treatment plan development and evaluation”, International Journal of Radiation Oncology Biology Physics, 23, 367-375(1992).
[14] Niemierko, A., “Reporting and analyzing dose distributions: a concept of equivalent uniform dose”, Medical Physics, 24, 103-110(1997).
[15] Pugachev, A., Li, J. G., Boyer, A. L., Hancock, S. L., Le, Q. T., Donaldson, S. S. and Xing, L., “Role of Beam Orientation Optimization in Intensity-Modulated Radiation Therapy”, International Journal of Radiation Oncology Biology Physics, 50, 551-560(2001).
[16] Pugachev, A. and Xing, L., “Computer-assisted selection of coplanar beam orientations in intensity-modulated radiation therapy”, Physics in Medicine and Biology, 46, 2467-2476(2001).
[17] Pugachev, A. and Xing, L., “Pseudo beam’s-eye–view as applied to beam orientation selection in intensity-modulated radiation therapy”, International Journal of Radiation Oncology Biology Physics, 51, 1361-1370(2001).
[18] Pugachev, A. and Xing, L., “Incorporating prior knowledge into beam orientation optimization in IMRT”, International Journal of Radiation Oncology Biology Physics, 54, 1565-1574(2002).
[19] Rowbottom, C. G., Oldham, M. and Webb, S., “Constrained customization of non-coplanar beam orientations in radiotherapy of brain tumours”, Physics in Medicine and Biology, 44, 383-399(1999).
[20] Rowbottom, C. G., Webb, S. and Oldham, M., “Beam-orientation customization using an artificial neural network”, Physics in Medicine and Biology, 44, 2251-2262(1999).
[21] Schreibmann, E., Lahanas, M., Xing, L. and Baltas, D., “Multiobjective evolutionary optimization of the number of beams, their orientations and weights for intensity-modulated radiation therapy”, Physics in Medicine and Biology, 49, 747-770(2004).
[22] Schreibmann, E. and Xing, L., “Dose–volume based ranking of incident beam direction and its utility in facilitating IMRT beam placement”, International Journal of Radiation Oncology Biology Physics, 63, 584-593(2005).
[23] Stein, J., Mohan, R., Wang, X. H., Bortfeld, T., Wu, Q., Preiser, K., Ling, C. C. and Schlegel, W., “Number and orientations of beams in intensity-modulated radiation treatments”, Medical Physics, 24, 149-160(1997).
[24] Wang, C., Dai, J. and Hu, Y., “Optimization of beam orientations and beam weights for conformal radiotherapy using mixed integer programming”, Physics in Medicine and Biology, 48, 4065-4076(2003).
[25] Wang, X., Zhang, X., Dong, L., Liu, H., Wu, Q. and Mohan, R., “Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy”, International Journal of Radiation Oncology Biology Physics, 60, 1325-1337(2004).
[26] Xing, L., Hamilton, R. J., Pelizzari, C. and Chen, G. T. Y., “A three-dimensional algorithm for optimizing beam weights and wedge filters”, Medical Physics, 25, 1858-1865(1998).
[27] Yang, R., Dai, J., Yang, Y. and Hu, Y., “Beam orientation optimization for intensity-modulated radiation therapy using mixed integer programming”, Physics in Medicine and Biology, 51, 3653-3666(2006).