簡易檢索 / 詳目顯示

研究生: 陳威仁
Chen, Wei-Ren
論文名稱: 應用於電容式微機電超音波感測器之快閃式類比數位轉換器
A Flash Analog-to-Digital Converter for Capacitive Micromachined Ultrasonic Sensors
指導教授: 盧向成
Lu, Sheng-Cheng
口試委員: 劉承賢
Liu, Cheng-Hsien
邱一
Chiu, Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 107
中文關鍵詞: 微機電電容式超音波感測器快閃式類比數位轉換器溫度碼
外文關鍵詞: MEMS, capacitive ultrasonic sensors, flash ADC, thermometer code
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究快閃式類比數位轉換器(Flash analog-to-digital converters),應用於CMOS電容式微機電超音波感測器後端之超音波訊號的處理。超音波感測器之前端感測介面電路利用運算放大器電容性回授進行感測。感測電容置於運算放大器的輸入端,給定直流偏壓電壓點。當感測電容接收到超音波訊號,由感測電容值的改變,電容比例發生變化經由回授運算使而輸出端產生電壓變化。經過傅立葉頻率分析得到感測超音波訊號的頻寬約為15 MHz。
    超音波感測器後端的類比數位轉換器為了提供足夠的操作頻率,我們採用最快速的快閃式類比數位轉換器架構。首先,輸入端的類比連續時間(Continuous-time)訊號會經由取樣且保持電路變成類比離散時間(Discrete–time)訊號。當此離散訊號不隨前端類比訊號改變的期間,類比數位轉換器將對其進行量化(Quantization)。類比數位轉換器通常利用比較器進行量化,我們採用時序控制(Clock-controlled)型的比較器。快閃式架構的量化方法為經由比較器陣列,將輸入訊號同時地對定義的參考準位同時做比較,量化結果為溫度碼。然而比較器的輸入端偏移電壓(Offset voltage)將嚴重影響量化的準確性。此處我們可由Monte Carlo模擬來估計偏移電壓的大小。個別比較器的隨機偏移電壓利用電阻性平均網路作平均,降低對比較器陣列量化準確性影響。溫度碼的後端處理經過溫度碼邊緣偵測器,溫度碼邊緣再由編碼器轉為6位元二進位碼。溫度碼邊緣偵測器及編碼器都是由CMOS邏輯閘建構而成。依據前述設計我們在TSMC 0.35-μm CMOS製程上實現一個工作電壓3.3 V、取樣頻率達到135 MHz、解析度為6位元的快閃式類比數位轉換器。類比數位轉換器消耗功率為110.3 mW,晶片實作出面積為2.2×2.3平方釐米。


    This work reports a CMOS flash analog-to-digital converter (ADC) for capacitive micromachined ultrasonic sensors.
    The ultrasonic sensing element is fabricated by post-processing in a conventional 0.35-μm CMOS process. The sensing circuit of ultrasonic sensor is composed of the capacitive sensing element and a feedback capacitor in the feedback loop of a wideband Opamp. Once the sensing element receives the ultrasound, the ratio of capacitances is changed and a sensed signal is read out at the output. The measured signal bandwidth is approximately 15 MHz.
    The flash ADC is introduced to in the backend. To increase the linearity of the system, a bootstrapped sample-and-hold circuit is used. Discrete-time sampled signals are quantized by a comparator array, which consists of two-stage pre-amplifiers and regenerative latches. The input-referred random offset voltages of comparators are suppressed by resistive array averaging. A 6-bit 135 MS/s flash ADC is designed with INL/ DNL peaks at ±0.2 LSB and ±0.15 LSB, respectively. The digital backend is a logic-gate based 1-out-of-64 code generator with bubble correction and fat tree encoder. The power consumption is 110.3 mW at 135 MS/s with 3.3-V power supply. This ADC is fabricated in the TSMC 2P4M 0.35-μm CMOS process.

    第一章 緒論 ………………………………………………………….. 1 1-1 超音波感測 …………………………………………………………... 1 1-2 電容式微機電超音波感測器 …………………………………...…… 2 1-3 整合型三維超音波成像系統 ………………………………………... 3 第二章 類比數位轉換器原理 …………………………………….... 11 2-1 類比數位轉換參數 ……………………………………………….… 11 2-2 類比數位轉換器簡介 ………………………………………………. 17 2-3 類比數位轉換器之取樣頻率 …………………………………….… 21 第三章 快閃式類比數位轉換器設計考量 ………………………… 23 3-1 比較器之偏移電壓 ……………………………………………….… 23 3-2 快閃式類比數位轉換器之設計技巧 ………………………………. 25 3-3快閃式類比數位轉換器文獻之比較 ……………………………….. 30 第四章 應用於超音波感測器之快閃式類比數位轉換器設計 ……. 39 4-1快閃式類比數位轉換器架構設計 ………………………………….. 39 4-2 各區塊子電路設計 …………………………………………………. 43 第五章 區塊子電路及類比數位轉換器模擬 ……………………… 55 5-1 取樣且保持電路之模擬 …………………………………………… 55 5-2比較器過驅復原能力及Constant-gm偏壓電路模擬 …………….. 57 5-3 偏移電壓大小之模擬 ……………………………………………… 59 5-4 快閃式類比數位轉換器之模擬 …………………………………… 62 第六章 實作結果與討論 …………………………………………… 69 6-1 打線封裝前置作業 …………………………………………………. 69 6-2 首次下線類比數位轉換器之量測 …………………………………. 71 6-3 量測結果討論 ………………………………………………………. 79 6-4 第二次下線考量及改進 ……………………………………………. 81 第七章 未來工作………………………………………………….… 87 7-1 類比數位轉換器之規格及特性量測 ………………………………. 87 7-2 電容式微機電超音波感測器及類比數位轉換器整合性測試 ….… 90 7-3 結語 ……………………………………………………….…… 91 第八章 參考文獻 …………………………………………………… 92

    第八章 參考文獻

    [1] M. Chen and S. C. Lu, “Design and characterization of an air-coupled capacitive ultrasonic sensor fabricated in a CMOS process,” Journal of Micromechnics and Microengineering, vol.18, no.1, pp.1-6, 2008.
    [2] C. Daft, S. Calmes, D. da Graca, K. Patel, P. Wagner, and I. Ladabaum, “Microfabricated ultrasonic transducers monolithically integrated with high voltage electronics,” IEEE Ultrasonics Symposium, pp.493-496, 2004.
    [3] P. Eccardt, K. Neiderer, T. Scheiter, and C. Hierold, “Surface micromachined ultrasound transducers in CMOS technology,” IEEE Ultrasonics Symposium, pp.959-962, 1996.
    [4] J. A. Geen, S. J. Sherman, J. F. Chang and S. R. Lewis, “Single-chip surface micromachined integrated gyroscope with 50□/h allan deviation,” IEEE Journal of Solid-state Circuits, vol.37, no.12, pp.1860-1866, 2002.
    [5] X. Jin, I. Ladabaum, F. L. Degertekin, S. Calmes and B. T. Khuri-Yakub, “Fabrication and characterization of surface micromachined capacitive ultrasonic immersion transducers,” IEEE Journal of Microelectromechanical Systems, vol.8, no.1, pp.100-114, 1999.
    [6] B. T. Khuri-Yakub, O. Oralkan and M. Kupnik, “Next-gen ultrasound,” IEEE Spectrum, pp.44-49, May 2009.
    [7] I. Ladabaum, X. Jin, H. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, vol.45, no.3, pp.678-690, 1998.
    [8] S. Vaithilingam, T. J. Ma, Y. Furukawa, I. O. Wygant, X. Zhuang, A. De La Zerda, A. Kamaya, S. S. Gambhir, R. B. Jeffrey Jr., and B. T Khuri-Yakub, “Three-dimensional photoacoustic imaging using a two-dimensional CMUT array,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, vol.56, no.11, pp.2411-2419, 2009.
    [9] X. Wang, Y. Fan, W. C. Tian, H. J. Kwon, S. Kennedy, G. Claydon, and A. May, “An air-coupled capacitive micromachined ultrasound transducer for noncontact nondestructive evaluation,” IEEE Sensors Conference, pp.1464-1467, Atlanta, 2007.
    [10] X. Zhuang, I. O. Wygant, D. Lin, M. Kupnik, O. Oralkan, and B. T. Khuri-Yakub, “Wafer-bonded 2-D CMUT arrays incorporating through-wafer trench-isolated interconnects with a supporting frame,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.56, no.1, pp.182-192, 2009.
    [11] D. T. Yeh, O. Oralkan, I. O. Wygant, M. O'Donnell, and B. T. Khuri-Yakub, “3-D ultrasound imaging using a forward-looking CMUT ring array for intravascular/intracardiac applications,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.53, no.6, pp.1202-1211, 2006.
    [12] O. Oralkan, A. S. Ergun, C. H. Cheng, J. A. Johnson, M. Karaman, T. H. Lee, and B. T. Khuri-Yakub, “Volumetric ultrasound imaging using 2-D CMUT arrays,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.50, no.11, pp.1581-1594, 2003.
    [13] K. Kaviani, O. Oralkan, P. Khuri-Yakub, and B. A. Wooley, “A multichannel, pipeline analog-to-digital converter for an integrated 3-D ultrasound imaging system,” IEEE Journal of Solid-state Circuits, vol.38, no.7, pp.1266-1270, 2003
    [14] I. Mehr and D. Dalton, “A 500-Msample/s, 6-bit Nyquist-rate ADC for disk-drive read-channel applications, “IEEE Journal of Solid-state Circuits, vol.34, no.7, pp.912-920, 1999.
    [15] K. Nagaraj, D. A. Martin, M. Wolfe, R. Chattopadhyay, S. Pavan, J. Cancio, and T. R. Viswanathan, “A 700MSample/s 6b read channel A/D converter with 7b servo mode,” IEEE International Solid-state Circuits Conference, pp.426-427 2000.
    [16] K. Nagaraj, D. A. Martin, M. Wolfe, R. Chattopadhyay, S. Pavan, J. Cancio, and T. R. Viswanathan, “A dual-mode 700-Msamples/s 6-bit 200-Msamples/s 7-bit A/D converter in a 0.25-μm digital CMOS process,” IEEE Journal of Solid-state Circuits, vol.35 no.12, pp.1760-1768, 2000.
    [17] K. Yoon, S. Park, and W. Kim, “A 6b 500Msample/s CMOS flash ADC with a background interpolated auto-zeroing technique,” IEEE International Solid-state Circuits Conference, pp.326-327, 1999.
    [18] S. Tsukamoto, I. Dedic, T. Endo, K. Y. Kikuta, K. Goto, and O. Kobayashi, “A CMOS 6-b, 200Msample/s, 3V supply A/D converter for a PRML read channel LSI,” IEEE Journal of Solid-state Circuits, vol.31, no.11, pp.1831-1836, 1996.
    [19] S. Tsukamoto, W. G. Schofield, and T. Endo, “A CMOS 6-b 400-Msample/s ADC with error correction,” IEEE Journal of Solid-state Circuits, vol.33, no.12, pp.1939-1947, 1998.
    [20] Y. Tamba and K. Yamakido, “A CMOS 6b 500Msample/s ADC for a hard disk drive read channel,” IEEE International Solid-state Circuits Conference, pp.324-325, 1999.
    [21] P. C. S. Scholtens and M. Vertregt, “A 6-b 1.6-Gsample/s flash ADC in 0.18-μm CMOS using averaging termination,” IEEE Journal of Solid-state Circuits, vol.37, no.12, pp.1599-1609, 2002.
    [22] M. Choi and A. A. Abidi, “A 6-b 1.3-Gsample/s A/D converter in 0.35-μm CMOS,” IEEE Journal of Solid-state Circuits, vol.36, no.12, pp.1847-1858, 2001.
    [23] C. Hung, J. Shiu, I. Chen; H. Chen, “A 6-bit 1.6Gs/s flash ADC in 0.18-μm CMOS with reversed-reference dummy,” IEEE Asian Solid-state Circuits Conference, pp.335-338, 2006.
    [24] D. Lee, J. Yoo, K. Choi, and J. Ghaznavi, “Fat tree encoder design for ultra-high speed flash A/D converters,” Midwest Symposium on Circuits and Systems, no.2, pp.87-90, 2002.
    [25] P. Iyappan, P. Jamuna, and S. Vijayasamundiswary, “Design of analog-to-digital converter using CMOS logic” International Conference on Advances in Recent Technologies in Communication and Computing, pp.74-76, 2009
    [26] M. J. M. Pelgrom, A. A. D. C.J. Duinmijer, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE Journal of Solid-state Circuits, vol.24, no.5, pp.1433-1440, 1989.
    [27] K. Uyttenhove and M. S. J. Steyaert, “A 1.8V 6-bit 1.3-GHz flash ADC in 0.25-μm CMOS,” IEEE Journal of Solid-state Circuits, vol.38, no.7, pp.1115-1122, 2003.
    [28] L. Sumanen, M. Waltari, and K. A. I. Halonen, “A 10-bit 200MS/s CMOS parallel pipeline A/D converter,” IEEE Journal of Solid-state Circuits, vol.36, no.7, pp.1048-1055, 2001.
    [29] H. Y. Lee, “Wideband characterization of a typical bonding wire for microwave and millimeter-wave integrated circuits,” IEEE Transactions on Microwave Theory and Techniques, vol.43, no.1, pp.63-68, 1995
    [30] R. Singh and S. Sali, “Modeling of electromagnetically coupled substrate noise in flash A/D converters,” IEEE Transaction on Electromagnetic Compatibility, vol.45, no.2, pp.459-468, 2003

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE