簡易檢索 / 詳目顯示

研究生: 徐 蘇
Xu, Su
論文名稱: 二氧化錳基奈米材料表面特性及其在環境技術中的應用
Study of Manganese Dioxide Based Nanomaterials: Surface Properties and their Application in Environmental Technology
指導教授: 王竹方
Wang, Chu-Fang
口試委員: 董瑞安
Doong, Ruey-An
黃志彬
Huang, Chih-Pin
吳劍侯
Wu, Chien-Hou
王清海
Wang, Tsing-Hai
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 183
中文關鍵詞: 二氧化錳奈米材料表面電荷電容去離子染料降解
外文關鍵詞: MnO2, nanocomposite, surface charge, capacitive deionization, dye degradation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化錳作為一種環境友好,地殼豐度高的材料,越來越引起研究者的注意,在超級電容、電容去離子等應用中,二氧化錳基奈米材料顯示出高理論電容值。但對於二氧化錳表面特性,如表面電荷等影響的研究較少。因此本論文以二氧化錳基奈米材料為對象,通過其在環境技術中的電容去離子效率為評價,對結構、表面電荷、孔徑影響等問題進行探討。
    通過以活性炭為載體的不同晶相二氧化錳(α,β,γ,和 δ)在電容去離子效率的比較和酸堿滴定分析,發現由於二氧化錳奈米材料晶相結構引起的表面異質性,導致表面羥基去質子化,因此去離子效率隨著表面負電荷增加而降低。而交流阻抗分析顯示,高表面電荷會誘導擴散層電阻增加,抑制共離子的進入,因此施加的偏壓被用於客服電雙層阻力,而非電吸附,導致去離子效率降低。
    為進一步討論二氧化錳本身表面電化學對電容去離子影響,摻雜鐵、鈷和鎳離子的α-二氧化錳奈米材料被用於電容去離子陰極。結果同樣顯示,去離子效率隨表面負電荷密度增加而降低,與碳基材料微孔特性不同,二氧化錳奈米材料為介孔環境,在介孔中高離子化表面發生了明顯的共離子排斥效應。而通過摻雜技術調整結構應力,進而調控表面電荷,將其與微孔改性相結合,將有效提升去離子效率。
    為深入了解二氧化錳基奈米材料的電化學及微孔碳基材料的電容特性對去離子效率影響,製備摻雜不同比例二氧化錳的電容去離子電極,對其在三個連續充放電循環中施加不同偏壓下的CDI性能進行評價,採用三種不同方式進行電容估算:1)CV曲線面積 2)定電流除以偏壓 3)放電尖峰電流(電極表面累積電荷)除以偏壓。研究結果表明,從3)中得出的電容與除鹽效率之間存在線性關係,電容隨交換電流的增加而增大。表明,碳質基質的微孔和高導電性分別是發展雙電層和達到高交換電流的重要因素;另一方面,具有高交換電流電極的電化學特性對電荷積累和所產生的高除鹽效率非常重要。
    最後,採用竹炭(微孔碳基)為基質,製備磁性竹炭-二氧化錳復合材料,活化過硫酸鹽降解染料.結果顯示,磁性有利於後端竹炭的收集和活化,該復合材料具有吸附及催化雙效作用,硫酸根自由基是主導自由基。


    As an environmentally friendly, nature abundant material, manganese dioxide attracts more attention in environmental technique and energy storage. In addition, MnO2 shows excellent theoretical specific capacitance by the applied in supercapacitor and capacitive deionization. However, there is seldom study to explore the effect of surface property, such as surface charge. So in this thesis, we focus on MnO2 and investigate the effect of structure, surface charge and pore size by evaluation with capacitive deionization performance.
    To studying the correlation between the CDI performance and MnO2 structure, a series of MnO2 (α,β,γ,and δ phase) were synthesized and supported on activated carbon as cathodes in simple batch mode experiments. Results of alkalimetric-acidimetric titration revealed that due to surface heterogeneity originating from the structure of MnO2 phase, the deionization efficiency decreased with increase in the negative surface charge as a result of deprotonated surface hydroxyl groups. The electrochemical impedance spectroscopy analyses indicated highly charged surface and conversely inhibited the access of co-ions in the CDI process. In this case, the applied bias mainly allowed ions overcome the double layer resistance, instead of accumulation (electrosorption) on the electrode.
    To explore how the surface chemistry of MnO_2 itself influences CDI efficiency, A series of Fe, Co, and Ni-doped α-MnO_2 (< 0.1 mol%) was used as a model cathode material in CDI. The results show also, that CDI efficiency decreased with increasing negative surface charge density. It likely attributed to the appreciable co-ion expulsion occurring at highly ionized surface in the mesopores of MnO_2. It is thus concluded that the combination of structural stress adjustment with doping elements to modified the surface charge and a microporous environment would be important for CDI efficiency enhancement by minimizing the co-ion exclusion effect.
    To deep understanding the interplay between the electrochemical behavior of associated manganese oxide (MnO2) and the capacitive property of microporous carbonaceous support is essential for further capacitive deionization (CDI) performance enhancement. A series of electrodes with different MnO2/carbon weight ratios were thus fabricated and their CDI performances at different applied potentials in three consecutive charging/discharging cycles were evaluated. The capacitance of these electrodes was estimated through three distinct routes: 1) the area under CV curves, 2) the current passing through the electrodes in the given charging time intervel and then divided by the applied voltage (C=Q/V= (i × t )/V ), and 3) the area under the discharge spike current (accumulated charges at electrode surface then divided by the applied voltage). Interestingly, a rather linear correlation between the capacitacne derived from 3) and salt removal/released was noted and this linear correlation was capable of accounting for all the salt removal behavors in the examined voltage window. By further arranging obtained CV curves in a manner similar to the Tafel plot, it was found that the capacitacne derived from 3) increased with increasing exchange current. Based on these experimental observations, it was thus concluded that the micropores and high electric conducitity of the carbonaceous support is important for electic double layer capacitance development and for reaching a high exchange current, respectively. On the other hand, an electrochemical property of an electrode being capable of possessing high exchange current is important for charge accumulation and consequently high salt removal by a CDI cell.
    Finally, Bamboos based activated carbon (BAC) were synthesis with magnetic nanoparticle and Mn-ions to form a Mn@MBAC nanocomposite, the magnetic property benefits the collection and regeneration in the post-process. The as-synthesized nanocomposites used as bifunctional materials for the adsorption and catalytic oxidation of azo dye methyl orange degradation. The results demonstrated that the added magnetic nanoparticle and Mn-ions significantly affected the elemental composition, leading to improved adsorption efficiency as well as the catalytic activity . The data fit well with the Freundlich isotherm model and pseudo-second-order kinetic model. Racial scavenging experiments indicated that the SO4·- was the primary radical.

    Chapter 1 Introduction 1 1.1 Background of the Study 1 1.2 Research Motivation 2 Chapter 2 Literature Review 5 2.1 Manganese Dioxide (MnO2) 6 2.1.1 Structures and morphologies of MnO2 7 2.1.2 Characterization of MnO2 11 2.1.3 Surface charge 14 2.2 Synthesis of manganese dioxide (MnO2) 17 2.2.1 The preparation of pure MnO2 17 2.2.2 Synthesis of MnO2 composites 29 2. carbon-based MnO2 composites 31 2.3 Application of MnO2 31 2.3.1 Capacitive Deionization (CDI) 31 2.3.2 Other applications 43 Chapter 3 Experimental Section 46 3.1 Materials 46 3.2 Methodologies 46 3.2.1 Synthesis of MnO2 46 3.2.2 Preparation of M-doped α-MnO2 (M = Fe, Co, Ni) 47 3.2.3 Fabrication of electrodes 47 3.2.4 Preparation of Bamboos activated carbon 48 3.2.5 Synthesis of Fe3O4 nanoparticles 49 3.2.6 Synthesis of Mn@MBAC composite 49 3.2.7 Characterization 49 3.2.8 Calculation of surface charge and surface charge density 50 3.2.9 CDI experiment 52 3.2.10 Electrochemical measurement 55 3.2.11 Degradation experiments 57 3.2.12 Adsorption kinetic 58 3.2.13 Adsorption isotherms 58 3.3 Experimental Instruments 59 3.3.1 Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) 59 3.3.2 Electrochemical Workstation 59 3.3.3 X-ray diffraction (XRD) 59 3.3.4 Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) 60 3.3.5 Specific Surface Area and Porosimetry Analyser (BET) 60 3.3.6 Zetasizer for zeta potential measurement (Zeta potential) 60 3.3.7 X-ray Photoelectron Spectroscopy (XPS) 61 Chapter 4 The Effect of Crystal Phase of Manganese Dioxide on the Capacitive Deionization of Simple Electrolytes 62 4.1 Introduction 62 4.2 Results and Discussion 64 4.2.1 Surface morphology and structure characterization 64 4.2.2 CDI performance 66 4.2.3 EIS analyses 72 4.2.4 Structure induced surface charge effect 76 4.3 Conclusion 78 Chapter 5 Effect of Surface Ionization of Doped MnO2 on Capacitive Deionization Efficiency 79 5.1 Introduction 79 5.2 Result and Discussion 81 5.2.1 Material Characterization 81 5.2.2 Surface Chemistry of Doped MnO2 86 5.2.3 CDI Performance 89 5.2.4 Effect of Structural Stress on MnO2 Surface Chemistry 96 5.2.5 Difference between MnO2 Electrodes/Carbon Electrodes 99 5.3 Conclusion 104 Chapter 6 Interplay between Manganese Oxide and Microporous Carbonaceous Support in Capacitive Deionization 106 6.1 Introduction 106 6.2 Result and Discussions 107 6.2.1 Microstructure of MnO2/CB composite electrodes 107 6.2.2 Electrochemical Behaviors of MnO2/CB composite 111 6.2.3 The CDI efficiency of MnO2/CB composite electrodes 116 6.2.4 Electrochemical behaviors involved in a CDI process 124 6.3 4. Conclusion 135 Chapter 7 MnO2 doped bamboos based magnetic activated carbon Mn@MBAC as a bifunctional material for the adsorption and catalytic oxidation of Methyl orange degradation 136 7.1 1. Introduction 136 7.2 Results and discussion 137 7.2.1 Characterization 137 7.2.2 Adsorption kinetic 142 7.2.3 Adsorption isotherms 143 7.2.4 Main radical 144 7.3 Conclusion 145 Chapter 8 Conclusion and Future Works 146 8.1 Conclusion 146 8.2 Future Work 148 Reference 149 List of Publications 182

    M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity, Sci. Adv. (2016) 2.
    I.A. Shiklomanov, Appraisal and assessment of world water resources, Water Int. 25 (1) (2000) 11–32.
    G. Tiwari, H. Singh, R. Tripathi, Present status of solar distillation, Sol. Energy 75 (5) (2003) 367–373.
    K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination—development to date and future potential, J. Membr. Sci. 370 (1) (2011) 1–22.
    M. Sadrzadeh, T. Mohammadi, Seawater desalination using electrodialysis, Desalination 221 (1–3) (2008) 440–447.
    H.-J. Lee, F. Sarfert, H. Strathmann, S.-H. Moon, Designing of an electrodialysis desalination plant, Desalination 142 (3) (2002) 267–286.
    Y.L. Zhi, Y.Y. Hui, A Study of MnO2 with Different Crystalline Forms for Pseudocapacitive Desalination. ACS Appl. Mater. Interfaces (2019) 11, 13176−13184.
    D. Barreca, F. Gri, A. Gasparotto, G. Carraro, L. Bigiani, T. Altantzis, B. Žener, U.L. Štangar, B. Alessi, D.B. Padmanaban, Multi-functional MnO2 nanomaterials for photo-activated applications by a plasmaassisted fabrication route. Nanoscale. (2019) 11(1):98–108.
    Y.L. Huang, H.H. Cheng, D. Shu, J. Zhong, X.N. Song, Z.P. Guo, A.M. Gao, J.N. Hao, C. He, F.Y. Yi, MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for highperformance supercapacitors. Chemical Engineering Journal 320 (2017) 634–643.
    J. Lee, S. Kim, C. Kim, J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. (2014) 7, 3683−3689.
    B.W. Byles, D.A.Cullen, K.L.More, E. Pomerantseva, Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization. Nano Energy (2018) 44, 476−488.
    M. Lei, J.L. Wang, P.Y. Zhang, Review on manganese dioxide for catalytic oxidation of airborne Formaldehyde. Applied Surface Science 466 (2019) 441–453.
    J. Landon, X. Gao, B. Kulengowski, J.K. Neathery, K.L. Liu, Impact of Pore Size Characteristics on the Electrosorption Capacity of Carbon Xerogel Electrodes for Capacitive Deioniza. Journal of The Electrochemical Society, (2012) 159 (11) A1861-A1866 .
    X. Gao, A. Omosebi, J. Landon, K.L Liu, Dependence of the Capacitive Deionization Performance on Potential of Zero Charge Shifting of Carbon Xerogel Electrodes during Long-Term Operation. Journal of The Electrochemical Society, (2014) 161 (12) E159-E166.
    X. Gao, A. Omosebi, J. Landon, K.L. Liu, Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption desorption behavior. Energy Environ. Sci., (2015) 8, 897.
    A. Omosebi, X. Gao, J. Rentschler, J. Landon, K.L. Liu, Continuous operation of membrane capacitive deionization cells assembled with dissimilar potential of zero charge electrode pairs. Journal of Colloid and Interface Science 446 (2015) 345–351.
    X. Gao, A. Omosebi, N. Holubowithch, J. Landon, K.L. Liu, Capacitive Deionization Using Alternating Polarization: Effect of Surface Charge on Salt Removal. Electrochimica Acta 233 (2017) 249–255.
    J.E. Post, Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA Vol. (1999) 96, pp. 3447–3454, March.
    P.C.K. Vesborg., T.F. Jaramillo, Addressing the Terawatt Challenge: Scalability in the Supply of Chemical Elements for Renewable Energy. RSC Adv. (2012) 2 (21), 7933−7947.
    K. Naoi, P. Simon, New materials and new configurations for advanced electrochemical capacitors Interfaces, (2008) 17, 34–37.
    C. Julien, M. Massot, C. Poinsignon, Lattice vibrations of manganese oxides. Part I. Periodic structures. Spectrochim, Acta A (2004) 60, 689–700.
    C.M. Julien, A. Mauger, Nanostructured MnO2 as Electrode Materials for Energy Storage, Nanomaterials, (2017) 7, 396.
    L.L. Feng, Z.W. Xuan, H.B. Zhao, Y. Bai, J.M. Guo, C.W. Su, X.K. Chen, MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Research Letters (2014) 9:290
    N. Li, X.H. Zhu, C.Y. Zhang, L.Q. Lai, R. Jiang, J.L. Zhu, Controllable synthesis of different microstructured MnO2 by a facile hydrothermal method for supercapacitors. Journal of Alloys and Compounds 692 (2017) 26-33.
    X. Zhang, X.Z. Sun, H.T. Zhang, D.C. Zhang, Y.W. Ma, Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors. Electrochimica Acta 87 (2013) 637– 644.
    B. Yin, S.W. Zhang, H. Jiang, F.Y. Qu, X. Wu, Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage. J. Mater. Chem. A, (2015) 3, 5722.
    J. Chu, D.Y. Lu, J. Ma, M. Wang, X.Q. Wang, S.X. Xiong, Controlled growth of MnO2 via a facile one-step hydrothermal method and their application in supercapacitors. Materials Letters 193 (2017) 263–265
    D. Jampaiah, V.K. Velisoju, P. Venkataswamy, V.E. Coyle, A. Nafady, B.M. Reddy, S.K. Bhargava, Nanowire Morphology of Mono- and Bidoped α MnO2 Catalysts for Remarkable Enhancement in Soot Oxidation. ACS Appl. Mater. Interfaces (2017) 9, 32652−32666.
    J.B. Fei, J. Zhao, H. Zhang, A.H. Wang, C.C. Qin, P. Cai, X.Y. Feng, J.B. Li, One-pot mass self-assembly of MnO2 sponge-like hierarchical nanostructures through a limited hydrothermal reaction and their environmental applications, Journal of Colloid and Interface Science 490 (2017) 621–627.
    R. Abraham, S. Mathew, S. Kurian, M.P. Saravanakumar, A.M. Ealias, G. George, Facile synthesis, growth process, characterisation of a nanourchinstructured α-MnO2 and their application on ultrasonic-assisted adsorptive removal of cationic dyes: A half-life and half-capacity concentration approach, Ultrasonics - Sonochemistry 49 (2018) 175–189.
    W.B.T. Franck, D. François, G. N. Yemeli, S. Laminsi, E.M. Gaigneaux, Plasma-induced redox reactions synthesis of nanosized α-, γ- and δ-MnO2 catalysts for dye degradation. Applied Catalysis B: Environmental 260 (2020) 118-159.
    Z.G. Hu, Y.F. Zhao, J.D. Liu, J.T. Wang, B. Zhang, X. Xiang, Ultrafine MnO2 nanoparticles decorated on graphene oxide as a highly efficient and recyclable catalyst for aerobic oxidation of benzyl alcohol. Journal of Colloid and Interface Science 483 (2016) 26–33.
    D.J. Davis, T.Y.N. Lambert, J.A. Vigil, M.A. Rodriguez, M.T. Brumbach, E.N. Coker, S.J. Limmer, Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction. J. Phys. Chem. C 2014, 118, 17342−17350.
    L. J. P. Jones, A. A. Milne, Birnessite, a new manganese oxide mineral from Aberdeenshire, Scotland (1956) Mineral. Mag. 31, 283–288.
    X.H. Zhang, B.X. Li, C.Y. Liu, Q.X. Chu, F.Y. Liu, X.F. Wanga, H.W. Chen, X.Y. Liu, Rapid microwave-assisted hydrothermal synthesis of morphology-tuned MnO2 nanocrystals and their electrocatalytic activities for oxygen reduction. Materials Research Bulletin 48 (2013) 2696–2701.
    R.A. Davoglio, G. Cabello, J.F. Marco, S.R. Biaggio, Synthesis and characterization of a-MnO2 nanoneedles for electrochemical supercapacitors. Electrochimica Acta 261 (2018) 428e435.
    H.J. Cui, H.Z. Huang, M.L. Fu, B.L. Yuan, W. Pearl, Facile synthesis and catalytic properties of single crystalline β-MnO2 nanorods. Catalysis Communications 12 (2011) 1339–1343.
    P. Zhang, D.F. Sun, M. He, J.W. Lang, S. Xu, X.B. Yan, Synthesis of Porous d-MnO2 Submicron Tubes as Highly Efficient Electrocatalyst for Rechargeable Li–O2 Batteries. ChemSusChem (2015) 8, 1972 – 1979.
    P.C. Li, C.C. Hu, H. Noda, H.Habazaki, Synthesis and characterization of carbon black/manganese oxide air cathodes for zinceair batteries: Effects of the crystalline structure of manganese oxides. Journal of Power Sources 298 (2015) 102-113
    L.Z. Wang, Y. Omomo, N. Sakai, K.Fukuda, I. Nakai, Y. Ebina, K. Takada, M. Watanabe, T. Sasaki, Fabrication and Characterization of Multilayer Ultrathin Films of Exfoliated MnO2 Nanosheets and Polycations. Chem. Mater. (2003) 15, 2873-2878.
    Z.N. Liu, K.L.Xu, H.Sun, S.Y. Yin, One-Step Synthesis of Single-Layer MnO 2 Nanosheets with Multi-Role Sodium Dodecyl Sulfate for High- Performance Pseudocapacitors. small (2015) 11, No. 18, 2182–2191.
    L. Wang, M. Wang, Z.H. Huang, T.X. Cui, X.C. Gui, F.Y. Kang, K.L. Wang, D.H. Wu, Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. J. Mater. Chem., (2011) 21, 18295
    H.B. Li, L.K. Pan, T. Lu, Y.K. Zhan, C.Y. Nie, Z. Sun, A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. Journal of Electroanalytical Chemistry 653 (2011) 40–44.
    B.H. Park, J.H. Choi, Improvement in the capacitance of a carbon electrode prepared using water-soluble polymer binder for a capacitive deionization application. Electrochimica Acta 55 (2010) 2888–2893.
    L.X. Li, L. Zou, H.H. Song, G. Morris, Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride. Carbon 4 7 ( 2 0 0 9 ) 7 7 5 –7 8 1.
    D. C. Grahama, The electrical double layer and the theory of electrocapillarity 1. Grahame, Chem. Rev., (1947)41, 441.
    S. Xu, S.P. Li, T.H. Wang, C.F. Wang, Effect of Surface Ionization of Doped MnO2 on Capacitive Deionization Efficiency. Langmuir (2019) 35 (3), 628-640.
    A.M. Hashem, H.M. Abuzeid, N. Narayanan, H. Ehrenberg, C.M. Julien, Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO2. Mater. Chem. Phys. (2011) 130, 33–38.
    P.J. Li, D.J. Blackwood, Development of a Nanostructured α MnO2/Carbon Paper Composite for Removal of Ni2+/Mn2+ Ions by Electrosorption, ACS Appl. Mater. Interfaces (2018) 10, 19615−19625.
    Y. Xie, C. Yang, P. Chen, D.W. Yuan, K.K. Guo, MnO2-decorated hierarchical porous carbon composites for highperformance asymmetric supercapacitors, Journal of Power Sources 425 (2019) 1–9.
    X.L. Bai, X.L. Tong, Y.L. Gao, W.Q. Zhu, C. Fu, J.Y. Ma, T.C. Tan, C.L. Wang, Y.S. Luo, H.B. Sun, Hierarchical multidimensional MnO2 via hydrothermal synthesis for high-performance supercapacitors. Electrochimica Acta 281 (2018) 525-533.
    X.H. Wang, S.B. Ni, G. Zhou, X.L. Sun, F. Yang, J.M. Wang, D.Y. He, Facile synthesis of ultra-long α-MnO2 nanowires and their microwave absorption properties. Materials Letters 64 (2010) 1496–1498.
    T. Barudžij, V. Kusigerski, N. Cvjeti´canin, S. Šorgi´, M. Perovi, M. Mitri´, Structural and magnetic properties of hydrothermally synthesized b-MnO2 and a-KxMnO2 nanorods. J. Alloys Compd. (2016) 665,261–270.
    T. Barudžij, N. Cvjeti´canin, D. Bajuk-Bogdanovi´, M. Mojovi, M. Mitri´, Vibrational and electron paramagnetic resonance spectroscopic studies of b-MnO2 and a-KxMnO2 nanorods. J. Alloys Compd. (2017),728, 259–270.
    L. Wang, W.L. Ma, Y.H. Li1, H.T. Cui, Synthesis of δ-MnO2 with nanoflower-like architecture by a microwave-assisted hydrothermal method. J Sol-Gel Sci Technol (2017) 82:85–91.
    M.Q. Liu, Q.H. Zhao, H. Liu, J.L. Yang, X. Chen, L.Y. Yang, Y.H. Cui, W.Y. Huang, W.G.Zhao, A.Y. Song, Y.T. Wang, S.X. Ding, Y.L. Song, G.Y. Qian, H.B. Chen, F. Pan, Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 64 (2019) 103942.
    M. H. Alfaruqi, J. Gim, S.J. Kim, J.J. Song, D.T. Pham, J. Jo, Z.L. Xiu, V. Mathew, J. Kim, A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochemistry Communications 60 (2015) 121–125.
    M.P. Kalamuei, K. Motevalli, M. Aliabadi, Rice-like MnO2 nanoparticles: simple and novel thermal decomposition synthesis, characterization and photocatalytic activity using new precursor. J Mater Sci: Mater Electron (2016) 27:4631–4635.
    Q. Zhang, Z.D. Xiao, X.H. Feng, W.F. Tan, G.H. Qiu, F. Liu, α-MnO2 nanowires transformed from precursor δ-MnO2 by refluxing under ambient pressure: The key role of pH and growth mechanism. Materials Chemistry and Physics 125 (2011) 678–685.
    P. Kanha, P. Saengkwamsawang, Effect of stirring time on morphology and crystalline features of MnO2 nanoparticles synthesized by co-precipitation method. Inorganic and Nano-Metal Chemistry. (2017) V 47.
    H. Kumar, M. Sangwan, P. Sangwan, Synthesis and characterization of MnO2 nanoparticles using co-precipitation technique. Int. J. Chem. Chem. Eng. (2013) 3, 155–160.
    C. Kahattha, S. Santhaveesuk, Influence of calcination temperature on physical and electrochemical properties of MnO2 nanoparticles synthesized by co-precipitation method. Ferroelectrics. (2019) 552. 121-131.
    L.S. Botero, A.P. Herrera, J.P. Hinestroza, Oriented Growth of α-MnO2 Nanorods Using Natural Extracts from Grape Stems and Apple Peels. Nanomaterials (2017) 7, 117.
    J. Luo, H.T. Zhu, H.M. Fan, J.K. Liang, H.L. Shi, G.H. Rao, J.B. Li, Z.M.mDu, Z.X. Shen, Synthesis of single-crystal tetragonal a-MnO2 nanotubes. J. Phys. Chem. C (2008) 112, 12594–12598.
    S. Jana, S. Basu, S. Pande, S.K. Ghosh, T. Pal, Shape-selective synthesis, magnetic properties, and catalytic activity of singlecrystalline b-MnO2 nanoparticles. J. Phys. Chem. C (2007) 111, 16272–16277.
    S.N. Guan, W.Z. Li, J.R. Ma, Y.Y. Lei, Y.S. Zhu, Q.F. Huang, X.M. Dou, A review of the preparation and applications of MnO2 composites in formaldehyde oxidation. Journal of Industrial and Engineering Chemistry 66 (2018) 126–140.
    X. Song, Y. Zhao, Y. Zheng, Synthesis of MnO2 nanostructures with sea urchin shapes by a sodium dodecyl sulfate-assisted hydrothermal process. Cryst. Growth Des. (2007) 7, 159–162.
    N. Wang, X. Cao, L. He, W. Zhang, L. Guo, C. Chen, R. Wang, S. Yang, One-pot synthesis of highly crystallized l-MnO2 nanodisks assembled from nanoparticles: Morphology evolutions and phase transitions. J. Phys. Chem. C (2008) 112, 365–369.
    J.C. Villegas, L.J. Garces, S. Gomez, J.P. Durand, S.L. Suib, Particle size control of cryptomelane nanomaterials by use of H2O2 in acidic conditions. Chem. Mater. (2005) 17, 1910–1918.
    J.L. Wang, J.E. Li, C.J. Jiang, P. Zhou, P.Y. Zhang, J.G. Yu, The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air, Appl. Catal. B Environ. 204 (2017) 147.
    S. Ching, D.J. Petrovay, M.L. Jorgensen, S.L. Suib, Sol-Gel synthesis of layered birnessite-type manganese oxides, Inorg. Chem. 36 (1997) 883.
    T.J. Trentler, K.M. Hichman, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro, Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth. Science (1995) 270, 1791–1794.
    Z. Li, Y. Ding, Y. Xiong, Y. Xie, Rational growth of various a-MnO2 hierarchical structures and b-MnO2 nanorods via a homogeneous catalytic route. Cryst. Growth Des. (2005) 5, 1953–1958.
    X. Zhang, P.Yu, Y. Chen, Y.W. Ma, Low-temperature hydrothermal synthesis of α-MnO2 three-dimensional nanostructures, Mater. Lett. 64 (5) (2010) 583.
    B. Bai, Q. Qiao, J. Li, J. Hao, Progress in research on catalysts for catalytic oxidation of formaldehyde, Chin. J. Catal. 37 (1) (2016) 27.
    Z. Liu, K. Xu, P. She, S. Yin, X. Zhu, H. Sun, Self-assembly of 2D MnO2 nanosheets into high-purity aerogels with ultralow density. Chem. Sci. (2016) 7, 1926–1932.
    J.G. Radich, Y.S. Chen, P.V. Kamat, Nickel-doped MnO2 nanowires anchored onto reduced graphene oxide for rapid cycling cathode in lithium ion batteries. ECS J. Solid State Sci. Technol. (2013) 2, M3178–M3181.
    H.N. Yoo, D.H. Park, S.J. Hwang, Effects of vanadium- and iron-doping on crystal morphology and electrochemical properties of 1D nanostructured manganese oxides. J. Power Sources (2008) 185, 1374–1379.
    D. Yang, Pulsed laser deposition of cobalt-doped manganese oxide thin films for supercapacitor applications. J. Power Sources (2012) 198, 416–422.
    Q. Li, L.W. Yin, Z.Q. Li, X.K. Wang, Y.X. Qi, J.Y. Ma, Copper doped hollow structured manganese oxide mesocrystals with controlled phase structure and morphology as anode materials for lithium ion battery with Improved electrochemical performance. ACS Appl. Mater. Interfaces (2013) 5, 10975–10984.
    W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. (2011) 40, 1697–1721.
    J. Kang, A. Hirata, L. Kang, X. Zhang, Y. Hou, L. Chen, C. Li, T. Fujita, K. Akagi, M. Chen, Enhanced supercapacitor performance of MnO2 by Atomic Doping. Angew. Chem. Int. Ed. (2013) 52, 1664–1667.
    C.K. King’ondu, N. Opembe, C. Chen, N K. Gala, H. Huang, A. Iyer, H.F. Garcés, S.L. Suib, Manganese oxide octahedral molecular sieves (OMS-2) multiple framework substitutions: A new route to OMS-2 particle size and morphology control. Adv. Funct. Mater. (2011) 21, 312–323.
    Z. Hu, X. Xiao, C. Chen, T. Li, L. Huang, C. Zhang, J. Su, L. Miao, J. Jiang, Y. Zhang, et al. Al-doped a-MnO2 for high mass-loading pseudocapacitor with excellent stability. Nano Energy (2015) 11, 226–234.
    R. Gobi, R. Poonguzhali, N. Shanmugam, A.S. Kumar, R. Shamugam, K. Sathishkumar, Influence of Zn doping on electrochemical capacitor behaviour of MnO2 nanocrystals. RSC Adv. (2015) 5, 45407–45415.
    K. Chen, W. Pan, D. Xue, Phase transformation of Cr3+-doped MnO2 for pseudocapacitive electrode marerials. J. Phys. Chem. C (2016) 120, 20077–20081.
    J. Hao, Y. Liu, H. Shen, W. Li, J. Li, Y. Li, Q. Chen, Effect of nickel-ion doping in MnO2 nanoneedles as electrocatalyst for the oxygen reduction reaction. J. Mater. Sci. Mater. Electron. (2016) 27, 6598–6605.
    T.N. Lambert, J.A. Vigil, S.E. White, C.J. Delker, D.J. Davis, M. Kelly, M.T. Brumbach, M.A. Rodriguez, B.S. Swartzentruber, Understanding the effects of cationic dopants on a-MnO2 oxygen reduction reaction electrocatalysts. J. Phys. Chem. C (2017) 121, 2789–2797
    Q.Y. Lv, S. Wang, H.Y. Sun, J. Luo, J. Xiao, J.W. Xiao, F. Xiao, S.Wang, Solid-State Thin-Film Supercapacitors with Ultrafast Charge/ Discharge Based on N Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites. Nano Lett. (2016) 16, 40−47.
    J. Oladunni, J.H. Zain, A. Hai, F. Banat, G. Bharath, E. Alhseinat, A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: From theory to practice. Separation and Purification Technology 207 (2018) 291–320.
    M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci.( 2015) 8 (8), 2296-2319.
    J.W. Blair, G.W. Murphy, Electrochemical Demineralization of Water with Porous Electrodes of Large Surface Area. Saline Water Conversion, American Chemical Society, (1960) . 206–223.
    A. M. Johnson, A. W. Venolia, R. G. Wilbourne, J. Newman, C. M. Wong, W. S. Gilliam, S. Johnson and R. H. Horowitz, U. S. Dept. of the Interior, Washington, (1970).
    J.B. Lee, K.K. Park, H.M. Eum, C.W. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 2006, 196, 125–134.Desalination, (2006) 196, 125–134.
    TT. Wu, G. Wang, S.Y. Wang, F. Zhan, Y. Fu, H.Y. Qiao, J.S. Qiu, Highly Stable Hybrid Capacitive Deionization with a MnO2 Anode and a Positively Charged Cathode. Environ. Sci. Technol. Lett. (2018) 5, 98−102.
    S. Hand, R.D. Cusick, Characterizing the Impacts of Deposition Techniques on the Performance of MnO2 Cathodes for Sodium Electrosorption in Hybrid Capacitive Deionization. Environ. Sci. Technol. (2017) 51, 12027-12034.
    S. Porada, R. Zhao, A. van der Wal, V. Presser, P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization. Prog. Mater Sci. (2013) 58 (8), 1388-1442.
    C.Y. Zhang, D. He, J.X. Ma, W.W. Tang, T.D. Waite, Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. Water Research 128 (2018) 314e330
    Y.H. Liu, T.C. Yu, Y.W. Chen, C.H. Hou, Incorporating manganese dioxide in carbon nanotube-chitosan as a pseudocapacitive composite electrode for high-performance desalination, ACS Sustain. Chem. Eng. 6 (3) (2018) 3196–3205.
    J. Yang, L. Zou, H. Song, Z. Hao, Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology, Desalination 276 (1) (2011) 199–206.
    Y.H. Liu, H.C. Hsi, K.C. Li, C.H. Hou, Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization, ACS Sustain. Chem. Eng. 4 (9) (2016) 4762–4770.
    J. Yang, L. Zou, H. Song, Preparing MnO2/PSS/CNTs composite electrodes by layer-by-layer deposition of MnO2 in the membrane capacitive deionization. Desalination, (2012) 286, 108– 114.
    R. Radhakrishnan, S.T. Oyama, Ozone decomposition over manganese oxide supported on ZrO2 and TiO2: a kinetic study using in situ laser Raman spectroscopy, J. Catal. 199 (2001) 282–290.
    J. Chen, J.C. Lin, V. Purohit, M.B. Cutlip, S.L. Suib, Photo assisted catalytic oxidation of alcohols and halogenated hydrocarbons with amorphous manganese oxides, Catal. Today 33 (1997) 205–214.
    H. Xu, N. Yan, Z. Qu, W. Liu, J. Mei, W. Huang, S. Zhao, Gaseous heterogeneous catalytic reactions over Mn−Based oxides for environmental applications: a critical review, Environ. Sci. Technol. 51 (2017) 8879–8892.
    H. Zhou, Y. Shen, J. Wang, X. Chen, C.-L. O'Young, S.L. Suib, Studies of decomposition of H2O2 over manganese oxide octahedral molecular sieve materials, J.Catal. 176 (1998) 321–328.
    Ahmed G. El-Deen, Nasser A.M. Barakat, Hak Yong Kim,. Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination 344 (2014) 289–298
    M. Abi Jaoude, Emad Alhseinat, K. Polychronopoulou, G. Bharath, Ismail Farouq Fahmi Darawsheh, Shoaib Anwer, Mark A. Baker, Steven J. Hinder, Fawzi Banat, Morphology-dependent electrochemical performance of MnO2 nanostructures on graphene towards efficient capacitive deionization. Electrochimica Acta 330 (2020) 135202.
    B.W. Chen, Y.F. Wang, F. Yu, Y.S. Zhu, L.X. Zhang, Yuping Wu, Enhanced Capacitive Desalination Performance of Porous Carbon Spheres@MnO2 Composite. Chin. J. Chem. (2016) 1—6.
    M. Li, H.G. Park, Pseudocapacitive Coating for Effective Capacitive Deionization. ACS Appl. Mater. Interfaces (2018) 10, 2442−2450
    B.W. Chen, Y.F. Wang, Z. Chang, X.W. Wang, M.X. Li, X. Liu, L.X. Zhang, Y.P. Wu, Enhanced capacitive desalination of MnO2 by forming composite with multi-walled carbon nanotubes. RSC Adv., (2016) 6.6730-6736.
    B.W. Byles, B.Hayes-Oberst, E. Pomerantseva, Ion Removal Performance, Structural/Compositional Dynamics, and Electrochemical Stability of Layered Manganese Oxide Electrodes in Hybrid Capacitive Deionization. ACS Appl. Mater. Interfaces (2018) 10, 32313−32322
    S. Chen, J.W. Zhu, X.D. Wu, Q.F. Han, X. Wang, Graphene oxide-MnO2 nanocomposites for supercapacitors, ACS Nano 4 (2010) 2822.
    J.Y. Qu, L. Shi, C.X. He, F. Gao, B.B. Li, Q. Zhou, H. Hu, G.H. Shao, X.Z. Wang, J.S. Qiu, Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue Carbon 66 (2014) 485.
    S. Chen, J.J. Duan, W. Han, S.Z. Qiao, A graphene–MnO2 framework as a new generation of three-dimensional oxygen evolution promoter Chem. Commun. 50 (2014) 207.
    S. Chen, G.X. Liu, H. Yadegari, H.H. Wang, S.Z. Qiao, Three-dimensional MnO2 ultrathin nanosheet aerogels for high-performance Li–O2 batteries J. Mater, Chem. A 3 (2015) 2559.
    Y. Murashima, R. Ohtani, T. Matsui, H. Takehira, R. Yokota, M. Nakamura, L.F. Lindoy, S. Hayami, Coexistence of electrical conductivity and ferromagnetism in a hybrid material formed from reduced graphene oxide and manganese oxide, Dalton Trans. 44 (2015) 5049.
    S.L. Chiam, S.Y. Pung, F.Y. Yeoh, Recent developments in MnO2-based photocatalysts for organic dye removal: a review. Environmental Science and Pollution Research, (2020).
    F. Ghanbari, M. Moradi, Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review, Chem. Eng. J. 310 (Part 1) (2017) 41–62.
    G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol. 38 (2004) 3705–3712.
    P. Hu, M. Long, Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications, Appl. Catal. B 181 (2016) 103–117.
    J. Wang, S. Wang, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chem. Eng. J. 334 (2018) 1502–1517.
    L. Zhang, L. Zhao, J. Lian, Nanostructured Mn3O4–reduced graphene oxide hybrid and its applications for efficient catalytic decomposition of Orange II and high lithium storage capacity, RSC Adv. 4 (2014) 41838–41847.
    M. Wei, Y. Ruan, S. Luo, X. Li, A. Xu, P. Zhang, The facile synthesis of a magnetic OMS-2 catalyst for decomposition of organic dyes in aqueous solution with peroxymonosulfate, New J. Chem. 39 (2015) 6395–6403.
    Y. Wang, Y. Xie, H. Sun, J. Xiao, H. Cao, S. Wang, 2D/2D nano-hybrids of c-MnO2 on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation, J. Hazard. Mater. 301 (2016) 56–64.
    J. Du, J. Bao, Y. Liu, H. Ling, H. Zheng, S.H. Kim, D.D. Dionysiou, Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A, J. Hazard. Mater. 320 (2016) 150–159.
    E. Saputra, S. Muhammad, H. Sun, A. Patel, P. Shukla, Z.H. Zhu, S. Wang, Α-MnO2 activation of peroxymonosulfate for catalytic phenol degradation in aqueous solutions, Catal. Commun. 26 (2012) 144–148.
    E. Saputra, H. Zhang, Q. Liu, H. Sun, S. Wang, Egg-shaped core/shell a-Mn2O3@a-MnO2 as heterogeneous catalysts for decomposition of phenolics in aqueous solutions, Chemosphere 159 (2016) 351–358.
    Q. Liu, X. Duan, H. Sun, Y. Wang, M.O. Tade, S. Wang, Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation, J. Phys. Chem. C 120 (2016) 16871–16878.
    E. Saputra, S. Muhammad, H. Sun, H.-M. Ang, M.O. Tadé, S. Wang, Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions, Appl. Catal. B 142–143 (2013) 729–735.
    L. Duan, B. Sun, M. Wei, S. Luo, F. Pan, A. Xu, X. Li, Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation, J. Hazard. Mater. 285 (2015) 356–365.
    Y. Wang, S. Indrawirawan, X. Duan, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional a-MnO2 nanostructures, Chem. Eng. J. 266 (2015) 12–20.
    E. Saputra, S. Muhammad, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, Different crystallographic one-dimensional mno2 nanomaterials and their superior performance in catalytic phenol degradation, Environ. Sci. Technol. 47 (2013) 5882–5887.
    C. Liu, D. Pan, X. Tang, M. Hou, Q. Zhou, J. Zhou, Degradation of Rhodamine B by the a-MnO2/peroxymonosulfate system, Water Air Soil Pollut. 227 (2016) 1–10.
    E. Saputra, S. Muhammad, H. Sun, H.-M. Ang, M.O. Tadé, S. Wang, Shapecontrolled activation of peroxymonosulfate by single crystal a-Mn2O3 for catalytic phenol degradation in aqueous solution, Appl. Catal. B 154–155 (2014) 246–251.
    L. Xu, W. Liu, X. Li, S. Rashid, C. Shen, Y. Wen, Fabrication of MnOx heterogeneous catalysts from wet sludge for degradation of azo dyes by activated peroxymonosulfate, RSC Adv. 5 (2015) 12248–12256.
    J.Z. Huang, Y.F. Dai, K. Singewald, C.C. Liu, S. Saxena, H.C. Zhang, Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenol A degradation under acidic conditions. Chemical Engineering Journal 370 (2019) 906–915
    P.Y. Liu, T.T. Yan, L.Y. Shi, H.S. Park, X.C. Chen, Z.G. Zhao, D.S. Zhang, Graphene-Based Materials for Capacitive Deionization, J. Mater. Chem. A. 5(27) (2017) 13907-13943.
    M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-Water-Environment Nexus Underpinning Future Desalination Sustainability, Desalination. 413 (2017) 52-64.
    J.R. Ray, W. Wong, Y.S. Jun, Antiscaling Efficacy of CaCO3 and CaSO4 on Polyethylene Glycol (PEG)-Modified Reverse Osmosis Membranes in the Presence of Humic Acid: Interplay of Membrane Surface Properties and Water Chemistry, Phys. Chem. Chem. Phys. 19 (7) (2017) 5647-5657.
    A.A. Shady, Recycling of Polluted Wastewater for Agriculture Purpose Using Electrodialysis: Perspective for Large Scale Application, Chem. Eng. J. 323 (2017) 1-18.
    X.T. Xu, M. Wang, Y. Liu, T. Lu, L.K. Pan, Ultrahigh Desalinization Performance of Asymmetric Flow-Electrode Capacitive Deionization Device with an Improved Operation Voltage of 1.8 V, ACS Sustain. Chem. Eng. 5 (1) (2017) 189-195.
    Z.J. Wang, H. Gong, Y. Zhang, P. Liang, K.J Wang, Nitrogen Recovery from Low-Strength Wastewater by Combined Membrane Capacitive Deionization (MCDI) and Ion Exchange (IE) Process, Chem. Eng. J. 316 (2017) 1-6.
    S. Ahualli, G.R. Iglesias, M.M. Fernandez, M.L. Jimenez, A.V. Delgado, Use of Soft Electrodes in Capacitive Deionization of Solutions, Environ. Sci. Technol. 51 (9) (2017) 5326-5333.
    C.J. Linnartz, A. Rommerskirchen, M. Wessling, Y. Gendel, Flow-Electrode Capacitive Deionization for Double Displacement Reactions, ACS Sustain. Chem. Eng. 5 (5) (2017) 3906-3912.
    G.W. Murphy, R. Hock, D. Caudle, A. Papastamataki, J.H. Tucker, E.N. Wood, F.C. Di Luzio, W.S. Gillam, S. Johnson, Electrochemical Demineralization of Water with Carbon Electrodes, University of Oklahoma; for Office of Saline Water, U.S. Dept. of the Interior, Washington, D.C. (1965) :188.
    C. Prehal, C. Koczwara, N. Jackel, H. Amenitsch, V. Presser, O. Paris, A Carbon Nanopore Model to Quantify Structure and Kinetics of Ion Electrosorption with in situ Small-Angle X-ray Scattering, Phys. Chem. Chem. Phys. 19 (23) (2017) 15549-15561.
    C. Macias, G. Rasines, P. Lavela, M.C. Zafra, J.L. Tirado, C.O. Ania, Mn-Containing N-Doped Monolithic Carbon Aerogels with Enhanced Macroporosity as Electrodes for Capacitive Deionization, ACS Sustain. Chem. Eng. 4 (5) (2017) 2487-2494.
    Z. Wang, T.T. Yan, L.Y. Shi, D.S Zhang, In Situ Expanding Pores of Dodecahedron-like Carbon Frameworks Derived from MOFs for Enhanced Capacitive Deionization, ACS Appl. Mater. Interfaces. 9 (17) (2017) 15068-15078.
    P.I. Liu, L.C. Chung, C.H. Ho, H. Shao, T.M. Liang, M.C. Chang, C.C.M. Ma, R.Y. Horng, Comparative Insight into the Capacitive Deionization Behavior of the Activated Carbon Electrodes by Two Electrochemical Techniques, Desalination. 379 (2016) 34-41.
    X. Xu, Y. Liu, M. Wang, C. Zhu, T. Lu, R. Zhao, L. Pan, Hierarchical Hybrids with Microporous Carbon Spheres Decorated Three-Dimensional Graphene Frameworks for Capacitive Applications in Supercapacitor and Deionization, Electrochim. Acta. 193 (2016) 88-95.
    I.A. Choi, D.H. Kwak, S.B. Han, J.Y. Park, H.S. Park, K.B. Ma, D.H. Kim, J.E. Won, K.W. Park, Doped Porous Carbon Nanostructures as Non-Precious Metal Catalysts Prepared by Amino Acid Glycine for Oxygen Reduction Reaction, Appl. Catal. B-Environ. 211 (2017) 235-244.
    M.H. Shao, Q.W. Chang, J.P. Dodelet, R. Chenitz, Recent Advances in Electrocatalysts for Oxygen Reduction Reaction, Chem. Rev. 116 (6) (2016) 3594-3657.
    W Stumm, J.J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd Edition, Wiley-Interscience Publication. (1995).
    C.P. Huang, W. Stumm, Specific Adsorption of Cations on Hydrous γ-Al2O3, J. Colloid Interface Sci. 43(2) (1973) 409-420.
    C.S. Fan, SS. Tseng, K.C. Li, C.H. Hou, Electro-Removal of Arsenic(III) and Arsenic(V) from Aqueous Solutions by Capacitive Deionization, J. Hazard. Mater. 312 (2016) 208-215.
    K. Kobayashi, Y.F. Liang, S. Murata, T. Matsuoka, S. Takahashi, N. Nishi, T Sakka, Ion Distribution and Hydration Structure in the Stern Layer on Muscovite Surface, Langmuir. 33(15) (2017) 3892-3899.
    K. Ganesan, P. Murugan, First Principles Calculations on Oxygen Vacant Hydrated α-MnO2 for Activating Water Oxidation and Its Self-Healing Mechanism, Phys. Chem. Chem. Phys. 18 (32) (2016) 22196-22202.
    J.A. Dawson, H. Chen, I. Tanaka, First-Principles Calculations of Oxygen Vacancy Formation and Metallic Behavior at a β-MnO2 Grain Boundary, ACS Appl. Mater. Interfaces. 7(3) (2015) 1726-1734.
    M. Ghaemi, F. Ataherian, A. Zolfaghari, S.M. Jafari, Charge Storage Mechanism of Sonochemically Prepared MnO2 as Supercapacitor Electrode: Effects of Physisorbed Water and Proton Conduction, Electrochim. Acta. 53(14) (2018) 4607-4614.
    Y.L. Shi, H.J. Sun, W.A. Saidi, M.C. Nguyen, C.Z. Wang, K.M. Ho, J.L. Yang, J. Zhao, Role of Surface Stress on the Reactivity of Anatase TiO2(001), J. Phys. Chem. Lett. 8(8) (2017) 1764−1771.
    C. P. Huang, The electrical double layer of γ-Al2O3-electrolyte system. In Colloid & Interface Science (Ed. Kerker, M.) 4 (1976) 29-43.
    Q.C. Peng, L.H. Liu, Y. Luo, Y.S. Zhang, W.F. Tan, F. Liu, S.L. Suib, G.H. Qiu, Cadmium Removal from Aqueous Solution by a Deionization Supercapacitor with a Birnessite Electrode, ACS Appl. Mater. Interfaces, (2016) 8(50), 34405−34413.
    Y.S. Fu, X.Y. Gao, D.S. Zha, J.W. Zhu, X.P. Ouyang, X. Wang, Yolk-Shell-Structured MnO2 Microspheres with Oxygen Vacancies for High-Performance Supercapacitors, J. Mater. Chem. A, (2018) 6(4), 1601−1611.
    J.M. Gu, X.Y. Fan, X. Liu, S.H. Li, Z. Wang, S.F. Tang, D.L. Yuan, Mesoporous Manganese Oxide with Large Specific Surface Area for High-Performance Asymmetric Supercapacitor with Enhanced Cycling Stability, Chem. Eng. J., (2017) 324, 35−43.
    M.Y. Yao, X. Zhao, L. Jin, F.Y. Zhao, J.X. Zhang, J. Dong, Q.H. Zhang, High Energy Density Asymmetric Supercapacitors Based on MOF-Derived Nanoporous Carbon/Manganese Dioxide Hybrids, Chem. Eng. J., (2017) 322, 582−589.
    Y.Y. Wang, Q. Wen, Y. Chen, L.J. Qi, A Novel Polyaniline Interlayer Manganese Dioxide Composite Anode for High-Performance Microbial Fuel Cell, J. Taiwan Inst. Chem. Eng., (2017) 75, 112−118.
    W. Stumm, J.J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd Edition, Wiley-Interscience Publication, (1995).
    C.P. Huang, W. Stumm, Specific Adsorption of Cations on Hydrous γ-Al2O3, J. Colloid Interface Sci., (1973) 43(2), 409−420.
    C.P. Huang, W. Stumm, The Specific Surface Area of γ-Al2O3, Surface Sci., (1972) 32(2): 287−296.
    R. Zhao, P.M. Biesheuvel, H. Miedema, H. Bruning, A. van der Wal, Charge Efficiency: A Functional Tool to Probe the Double-Layer Structure Inside of Porous Electrodes and Application in the Modeling of Capacitive Deionization, J. Phys. Chem. Lett. (2010) 1(1), 205–210.
    J.J. Lado, J.J. Wouters, M.I. Tejedor-Tejedor, M.A. Anderson, E. Garcia-Calvoa, Asymmetric Capacitive Deionization Utilizing Low Surface Area Carbon Electrodes Coated with Nanoporous Thin-Films of Al2O3 and SiO2, J. Electrochem. Soc., (2013) 160(8), E71−E78.
    X. Gao, S. Porada, A. Omosebi, K.L. Liu, P.M. Biesheuvel, J. Landon, Complementary Surface Charge for Enhanced Capacitive Deionization, Water Res., (2016) 91, 275−282.
    Y. Liu,J. Wei, Y.X. Tian, S.Q. Yan, The Structure-Property Relationship of Manganese Oxides: Highly Efficient Removal of Methyl Orange from Aqueous Solution, J. Mater. Chem. A, (2015) 3(37), 19000−19010.
    L.M. Housel, L. Wang, A. Abraham, J.P. Huang, G.D. Renderos, C.D. Quilty, A.B. Brady, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, Investigation of α MnO2 Tunneled Structures as Model Cation Hosts for Energy Storage, Acc. Chem. Res., (2018) 51(3), 575−582.
    Z.Y. Wang, F.P. Wang, Y. Li, J.L. Hu, Y.Z. Lu, M. Xu, Interlinked Multiphase Fe-Doped MnO2 Nanostructures: A Novel Design for Enhanced Pseudocapacitive Performance, Nanoscale, (2016) 8(13), 7309−7317.
    Z.G. Ye, T. Li, G. Ma, Y.H. Dong, X.L. Zhou, Metal-Ion (Fe, V, Co, and Ni)-Doped MnO2 Ultrathin Nanosheets Supported on Carbon Fiber Paper for the Oxygen Evolution Reaction, Adv. Funct. Mater., (2017) 27(44), 1704083.
    J.A. Vigil, T.N. Lambert, J. Duay, C.J. Delker, T.E. Beechem, B.S. Swartzentruber, Nanoscale Carbon Modified alpha-MnO2 Nanowires: Highly Active and Stable Oxygen Reduction Electrocatalysts with Low Carbon Content, ACS Appl. Mater. Interfaces, (2018) 10(2), 2040−2050.
    G. Cheng, S.L. Xie, B. Lan, X.Y. Zheng, F. Ye, M. Sun, X.H. Lu, L. Yu, Phase Controllable Synthesis of Three-Dimensional Star-Like MnO2 Hierarchical Architectures as Highly Efficient and Stable Oxygen Reduction Electrocatalysts, J. Mater. Chem. A, (2016) 4(42), 16462−16468.
    R.S. Faibish, M. Elimelech, Y. Cohen, Effect of Interparticle Electrostatic Double Layer Interactions on Permeate Flux Decline in Crossflow Membrane Filtration of Colloidal Suspensions: An Experimental Investigation, J. Colloid Interface Sci., (1998) 204(1), 77−86.
    A. Antony, T. Chilcott, H. Coster, G. Leslie, In situ Structural and Functional Characterization of Reverse Osmosis Membranes Using Electrical Impedance Spectroscopy, J. Membr. Sci., (2013) 425-426, 89−97.
    Y.S. Chang, M. Choi, M. Baek, P.Y. Hsieh, K. Yong, Y.J. Hsu, CdS/CdSe Co-sensitized Brookite 〖H:TiO〗_2 Nanostructures: Charge Carrier Dynamics and Photoelectrochemical Hydrogen Generation, Appl. Catal. B, (2018) 225, 379−385.
    L.M. Gurudayal, L.H. Wong, F.F. Abdi, Revealing the Influence of Doping and Surface Treatment on the Surface Carrier Dynamics in Hematite Nanorod Photoanodes, ACS Appl. Mater. Interfaces, (2017) 9(47), 41265−41272.
    A.P. Upadhyay, D.K. Behara, G.P. Sharma, M. Gyanprakash, R.G.S. Pala, S. Sivakumar, Fabricating Appropriate Band-Edge-Staggered Heterosemiconductors with Optically Activated Au Nanoparticles via Click Chemistry for Photoelectrochemical Water Splitting, ACS Sustain. Chem. Eng., (2016) 4(9), 4511−4520.
    Z.Z. Xie, J. Cheng, J.B. Yan, W.S. Cai, P.F. Nie, H.T.H. Chan, J.Y. Liu, Polydopamine Modified Activated Carbon for Capacitive Desalination, J. Electrochem. Soc., (2017) 164(12), A2636−A2643.
    P.I. Liu, LC. Chung, C.H. Ho, H. Shao, T.M. Liang, M.C. Chang, C.C.M. Ma, R.Y., Horng, Comparative Insight into the Capacitive Deionization Behavior of the Activated Carbon Electrodes by Two Electrochemical Techniques, Desalination, (2016) 379, 34−41.
    X.T. Xu, M. Wang, Y. Liu, T. Lu, L.K. Pan, Ultrahigh Desalinization Performance of Asymmetric Flow-Electrode Capacitive Deionization Device with an Improved Operation Voltage of 1.8 V, ACS Sustainable Chem. Eng., (2017) 5(1), 189−195.
    P.M. Biesheuvel, H.V.M. Hamelers, M.E. Suss, Theory of Water Desalination by Porous Electrodes with Immobile Chemical Charge, Colloids Interface Sci. Comm., (2015) 9, 1−5.
    L.C, Han, K.G. Karthikeyan, M.A. Anderson, K.B. Gregory, Exploring the Impact of Pore Size Distribution on the Performance of Carbon Electrodes for Capacitive Deionization, J Colloid Interface Sci., (2014) 430, 93−99.
    P.M. Biesheuvel, R. Zhao, S. Porada, A. van der Wal, A. Theory of Membrane Capacitive Deionization Including the Effect of the Electrode Pore Space, J Colloid Interface Sci., (2011) 360, 239–248.
    M.A. Brown, A. Goel, Z. Abbas, Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface, Angew. Chem. Int. Ed., (2016) 55(11), 3790–3794.
    Y.L. Shi, H.J. Sun, W.A. Saidi, M.C. Nguyen, C.Z. Wang, K.M. Ho, J.L. Yang, J. Zhao, Role of Surface Stress on the Reactivity of Anatase TiO2(001), J. Phys. Chem. Lett., (2017) 8(8), 1764−1771.
    N.C. Frey, B.W. Byles, H. Kumar, D.Q. Er, E. Pomerantseva, V.B. Shenoy, Prediction of Optimal Structural Water Concentration for Maximized Performance in Tunnel Manganese Oxide Electrodes, Phys. Chem. Chem. Phys., (2018) 20(14), 9480−9487.
    B.Y. Kang, X.Y. Jin, S.M. Oh, S.B. Patila, M.G. Kim, S.H. Kim, S.J. Hwang, An Effective Way to Improve Bifunctional Electrocatalyst Activity of Manganese Oxide via Control of Bond Competition, Appl. Catal. B, (2018) 236, 107−116.
    J.K. He, M.C. Wang, W.B. Wang, R. Miao, W. Zhong, S.Y. Chen, S. Poges, T. Jafari, W.Q. Song, J.C. Liu, S.L. Suib, Hierarchical Mesoporous NiO/MnO_2@PANI Core Shell Microspheres, Highly Efficient and Stable Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions, ACS Appl. Mater. Interfaces, (2017) 9(49), 42676−42687.
    G. Cabello, R.A. Davoglio, Inorganic Frameworks Based on Bimetallic Nanoparticles Encapsulated in Hollow MnO_2 Structures, Appl. Catal. B, (2017) 218, 192−198.
    X. Gao, J. Landon, J.K. Neathery, K.L. Liu, Modification of Carbon Xerogel Electrodes for More Efficient Asymmetric Capacitive Deionization, J. Electrochem. Soc., (2013) 160(9), E106−E112.
    M. E. Suss, T. F. Baumann, W. L. Bourcier, C. M. Spadaccini, K. A. Rose, J. G. Santiago, M. Stadermann, Capacitive desalination with flow-through electrodes. Energy Environ. Sci. (2012)5 (11), 9511-9519.
    C.T. Hsieh, H. Teng, Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon (2002) 40 (5), 667-674.
    L.I.Şanlı, V. Bayram, S. Ghobadi, N. Düzen, S.A. Gürsel, Engineered catalyst layer design with graphene-carbon black hybrid supports for enhanced platinum utilization in PEM fuel cell. Int. J. Hydrog. Energy (2017) 42 (2), 1085-1092.
    S.K.S. Wing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity. Pure & Appl. Chem. (1985) 57, 603-619.
    S. Schilling, A. Janssen, N. J. Zaluzec, M. G. Burke, Practical Aspects of Electrochemical Corrosion Measurements During In Situ Analytical Transmission Electron Microscopy (TEM) of Austenitic Stainless Steel in Aqueous Media. Microsc. Microanal. (2017) 23 (4), 741-750.
    M.E. Suss, V. Presser, Water desalination with energy storage electrode materials. Joule( 2018), 2(1), 10-15.
    X. Gao, A. Omosebi, J. Landon, K.L. Liu, Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes. Environ. Sci. Technol. (2015), 49(18), 10920-10926.
    B. Wang, J. Qiu, H. Feng, N. Wang, E. Sakai, K T. Omiyama, Preparation of MnO2/carbon nanowires composites for supercapacitors. Electrochim. Acta (2016) 212, 710-721.
    K. Wang, S. Gao, Z. Du, A. Yuan, W. Lu, L. Chen, MnO2-Carbon nanotube composite for high-areal-density supercapacitors with high rate performance. J. Power Sources (2016) 305, 30-36.
    Y.L. Shao, M.F. El-Kady, J.G. Sun, Y.G. Li, Q.H. Zhang, M.F. Zhu, H.Z. Wang, B. Dunn, R.B. Kaner, Design and mechanisms of asymmetric supercapacitors. Chem. Rev. (2018), 118(18), 9233-9280.
    W. Tang, P. Kovalsky, D. He, T. D. Waite, Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water Res. (2015) 84, 342-349.
    Rommerskirchen, A.; Kalde, A.; Linnartz, C. J.; Bongers, L.; Linz, G.; Wessling, M., Unraveling charge transport in carbon flow-electrodes: Performance prediction for desalination applications. Carbon (2019), 145, 507-520.
    Qu, YT. Baumann, T.F.; Santiago, J.G.; Stadermann, M., Characterization of resistances of a capacitive deionization system. Environ. Sci. Technol. (2015), 49(16), 9699-9706.
    E. C. Smith, C. L. C. Ellis, H. Javaid, L. A. Renna, Y. Liu, T. P. Russell, M. Bag, D. Venkataraman, Interplay between Ion Transport, Applied Bias, and Degradation under Illumination in Hybrid Perovskite p-i-n Devices. J. Phys. Chem. C. (2018) 122 (25), 13986-13994.
    J.H. Lee, W.S. Bae, J. H. Choi, Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process. Desalination (2010) 258 (1), 159-163.
    D. He, C. E. Wong, W. Tang, P. Kovalsky, T. D. Waite, Faradaic Reactions in Water Desalination by Batch-Mode Capacitive Deionization. Environ. Sci. Technol. Lett. (2016) 3 (5), 222-226.
    C.Y. Zhang, D. He, J.X. Ma, W.W. Tang, T.D. Waite, Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems. Electrochim. Acta 2019, 299, 727−735.
    Z.Y. Leong, H.Y. Yang, Capacitive deionization of divalent cations for water softening using functionalized carbon electrodes. ACS Omega (2020) 5(5), 2097−2106.
    C. Santos, E. García-Quismondo, J. Palma, M.A. Anderson, J.J. Lado, Understanding capacitive deionization performance by comparing its electrical response with an electrochemical supercapacitor: Strategies to boost round-trip efficiency. Electrochim. Acta (2020), 330, 1352162.
    Y. Salamat, C.H. Hidrovo, Significance of the micropores electro-sorption resistance in capacitive deionization systems. Water Res. (2020), 169, 115286.
    J-H. Choi, D-J. Yoon, A stable operation method for membrane capacitive deionization systems without electrode reactions at high cell potentials. Water Res. (2019), 157, 167−174.
    R. Futamura, T. Iiyama, Y. Takasaki, Y. Gogotsi, M.J. Biggs, M. Salanne, J. Ségalini, P. Simon, K. Kaneko, Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nat. Mater.( 2017), 16(12), 1225–1232.
    W. Tang, D. He, C. Zhang, P. Kovalsky, T. D. Waite, Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Res. (2017) 120, 229-237.
    J. Yu, K. Jo, T. Kim, J. Lee, J. Yoon, Temporal and spatial distribution of pH in flow-mode capacitive deionization and membrane capacitive deionization. Desalination 2018,439, 188-195.
    G. Divyapriya, K.K. Vijayakumar, I. Nambi, Development of a novel graphene/Co3O4 composite for hybrid capacitive deionization system. Desalination (2019) 451, 102-110.
    Z. Ye, T. Li, G. Ma, X. Peng, J. Zhao, Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors. J. Power Sources (2017) 351, 51-57.
    K. S. Birdi, Handbook of Surface and Colloid Chemistry. CRC Press: 2015.
    U.T. Sanli, H. Ceylan, I. Bykova, M. Weigand, M. Sitti, G. Schütz, K. Keskinbora, 3D Nanoprinted Plastic Kinoform X-Ray Optics. Adv. Mater. (2018) 30 (36), 1802503.
    Hui Hua Peng, Jie Chen, De Yi Jiang, Min Li, Li Feng, Dusan Losic, Fan Dong, Yu Xin Zhang. Synergistic effect of manganese dioxide and diatomite for fast decolorization and high removal capacity of methyl orange. Journal of Colloid and Interface Science 484 (2016) 1–9
    Baofen Sun, Yanan Yuan, Hongliang Li, Xingyun Li, Chuanhui Zhang, Fuan Guo, Xuehua Liu, Kean Wang, X.S. Zhao. Waste-cellulose-derived porous carbon adsorbents for methyl orange Removal. Chemical Engineering Journal 371 (2019) 55–63
    Qing Zhang, Yue Zeng, Xiuyun Xiao, Penghu Deng, Qing He, and Tonghua Zhang, Investigation on the Preparation and Adsorption Performance of Bamboo Fiber Based Activated Carbon. Fibers and Polymers 2019, Vol.20, No.2, 293-301
    Yan-Juan Zhang, Jie-LianOu, Zheng-KangDuan, Zhen-JiaoXing, YinWang. Adsorption of Cr(VI) on bamboo bark-based activated carbon in the absence and presence of humic acid. Colloids and Surfaces A: Physicochem. Eng. Aspects 481 (2015) 108–116
    Jianzhi Huang, Yifan Dai, Kevin Singewald, Chung-Chiun Liu, Sunil Saxena,
    Huichun Zhang, Effects of MnO2 of different structures on activation of peroxymonosulfate. for bisphenol A degradation under acidic conditions. Chemical Engineering Journal 370 (2019) 906–915
    Wanrong Hu, Yi Xie, Shan Lu, Panyu Li, Tonghui Xie, Yongkui Zhang, YaboWang. One-step synthesis of nitrogen-doped sludge carbon as a bifunctional material for the adsorption and catalytic oxidation of organic pollutants. Science of the Total Environment 680 (2019) 51–60
    Gong Chen, Xinyi Zhang, Yingjie Gao, Guixian Zhu, Qingfeng Cheng, Xiuwen Cheng. Novel magnetic MnO2/MnFe2O4 nanocomposite as a heterogeneous catalyst for activation of peroxymonosulfate (PMS) toward oxidation of organic pollutants. Separation and Purification Technology 213 (2019) 456–464
    Jianzhi Huang, Shifa Zhong, Yifan Dai, Chung-Chiun Liu, and Huichun Zhang. Effect of MnO2 Phase Structure on the Oxidative Reactivity toward Bisphenol A Degradation. Environ. Sci. Technol. 2018, 52, 11309−11318
    Jinyan Xie, Yi Wei, Xiaojie Song, Yamin Chen, Qiancheng Zou, Manye Wang, Aihua Xu, Xiaoxia Li. Controlled growth of c-MnO2 nanoflakes on OMS-2 for efficient decomposition of organic dyes in aqueous solution via peroxymonosulfate activation. Journal of Colloid and Interface Science 529 (2018) 476–485
    Melisew Tadele Alula , Peter Lemmens, Liu Bo, Dirk Wulferding, Jyisy Yang ,Hendrik Spende. Preparation of silver nanoparticles coated ZnO/Fe3O4 composites using chemical reduction method for sensitive detection of uric acid via surface-enhanced Raman spectroscopy. Analytica Chimica Acta 1073 (2019) 62-71
    Amir Ashrafi, Ahmad Rahbar-Kelishami, Hadi Shayesteh. Highly efficient simultaneous ultrasonic assisted adsorption of Pb (II) by Fe3O4@MnO2 core-shell magnetic nanoparticles: Synthesis and characterization, kinetic, equilibrium, and thermodynamic studies. Journal of Molecular Structure 1147 (2017) 40e47
    Nayereh Ghaeni, Mojtaba S. Taleshi⁎, Fatemeh Elmi. Removal and recovery of strontium (Sr(II)) from seawater by Fe3O4/MnO2/ fulvic acid nanocomposite. Marine Chemistry 213 (2019) 33–39
    Yu-Gyeong Kang a, Hakwon Yoon a, Chung-Seop Lee a, Eun-Ju Kim b, Yoon-Seok Chang a, Advanced oxidation and adsorptive bubble separation of dyes using MnO2-coated Fe3O4 nanocomposite. Water Research 151 (2019) 413e422
    Zhuo Zhang, Chen Zeng, Bangzhu Peng. Adsorption properties of magnetic carbon nanotubes for patulin removal from aqueous solution systems. Food Control 102 (2019) 1–10
    Lincheng Zhou, Junjun Ma, He Zhang, Yanming Shao, Yanfeng Li. Fabrication of magnetic carbon composites from peanut shells and itsapplication as a heterogeneous Fenton catalyst in removal ofmethylene blue. Applied Surface Science 324 (2015) 490–498
    Md. Azharul Islama, M.J. Ahmed, W.A. Khanday, M. Asifd, B.H. Hameed. Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotoxicology and Environmental Safety 138 (2017) 279–285
    Lei Yu, Peng-tao Wang, Qing-tao Xu, Tao He, George Oduro, Yan Lu. Enhanced decolorization of methyl orange by Bacillus sp. strain with magnetic humic acid nanoparticles under high salt conditions. Bioresource Technology 288 (2019) 121535
    Patharawadee Boonying, Thanitporn Narkkun, Wittawinwit Naowanon, Sujitra Amnuaypanich, Wei-Song Hung, Sittipong Amnuaypanich. Rapid decolorization of methyl orange using polyacrylonitrile membranes incorporated with nickel nanoparticles loaded in block copolymer micelles. Separation and Purification Technology 223 (2019) 203–210
    Yan Zhang, Tian Xu Zheng, Yao Bo Hu, Xiao Luo Guo, Hui Hua Peng, Yu Xin Zhang, Li Feng, Huai Li Zheng. Delta manganese dioxide nanosheets decorated magnesium wire for the degradation of methyl orange. Journal of Colloid and Interface Science 490 (2017) 226–232

    QR CODE