簡易檢索 / 詳目顯示

研究生: 秦麗筑
Chin, Li-Chu
論文名稱: 磷-鐵複合物作為高電量鈉離子電池陽極之應用
Phosphorus-iron composites for high capacity sodium-ion batteries anode
指導教授: 段興宇
Tuan, Hsing-Yu
口試委員: 曾院介
Tseng, Yuan-Chieh
袁芳偉
Yuan, Fang-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 32
中文關鍵詞: 鈉離子電池紅磷-鐵 複合物電池極限測試表現
外文關鍵詞: Sodium ion battery, Red phosphorus-iron composites, rate performance
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,鈉離子電池受到了極大的關注,由於其低成本、自然資源豐富、和鋰同為鹼金屬一族相似的化學性質,使其成為最有潛力替代鋰離子電池能源儲存和轉換的新系統。磷(P)是在鈉離子電池中具有最高理論容量(2596mAh g-1)的陽極材料,但由於其絕緣性質,商用的紅磷不能與鈉離子可逆地反應。磷的陽極材料系統中,它們都是以碳-磷複合材料的形式存在。在此研究中,我們提出以高能量球磨紅磷和適量鐵粉即可製備出紅磷-鐵複合物,為鈉離子電池(SIBs)提供1506.5mA h g-1的可逆電容量,30個循環的容量保持率為88%。EIS測試結果指出,含鐵的紅磷複合材料具有較高的鈉擴散係數。當作鈉離子電池陽極時,9.1%鐵添加的紅磷複合材料表現出最佳的電化學性能,電流密度速率能力測試分別在0.2、0.6、1、6和10A g-1的電流密度下,達到1582.3、1419.3、884.7和676.5 mA h g-1,可作為鈉離子電池的新型陽極材料。


    Recently, considerable attention has been paid to sodium-ion batteries (SIBs) due to low cost, abundant Na source and the similar chemical properties to Li, making it the most promising alternative to lithium-ion battery for application in energy storage and conversion of the new system. Phosphorus (P) is an anode material with the highest theoretical capacity (2596 mA h g-1) in a sodium ion battery, but commercially available red P is electrochemical inactivity with sodium as a result of the insulating nature. Among the P-based anodes for SIBs, they were all in the form of carbon−P composites. Herein, we report that commercial red phosphorus and appropriate amount of iron developed by high-energy ball milling can deliver a reversible capacity of 1506 mA h g−1 with capacity retention 88% over 30 cycles. EIS measurement results indicated that Fe content composites has higher sodium diffusion coefficient. When utilized as a sodium ion battery anode, 9.1% Fe-adding RP composites exhibited the best electrochemical performance achieved 1582.3, 1419.3, 884.7 and 676.5 mA h g-1 specific desodiation capacity at 0.2, 0.6, 1, 6 and 10 A g-1 current density in rate capability test, as a novel anode material for sodium ion batteries.

    中文摘要 1 Abstract II Table of Contents III List of Figures IV Chapter 1. Introduction 1 1.1 Development of Sodium ion batteries 1 1.2 Introduction of Mechanical milling 4 1.3 Development of phosphorus-carbon nanotube anode for SIB 5 Chapter 2. Experimental Section 11 2.1 Chemicals 11 2.2 Synthesis of RP-Fe composites 11 2.3 RP-Fe composites slurry formation 12 2.4 Sodium ion battery assembly 12 2.5 Electrochemical characterization 12 2.6 Characterization 12 Chapter 3. Result and discussion 14 3.1 RP-Fe composites characterization 14 3.2 Electrochemical performance 19 3.3 Conclusion 27 Reference 28 Appendix 32

    Reference
    (1) Ellis, B. L.; Lee, K. T.; Nazar, L. F., Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 2010, 22, 691-714.
    (2) Carmichael, R. S., Pratical Handbook of Physical Properties of Rocks and Minerals. CRC press :Boca Raton ,FL,: 1989.
    (3) Janek, J.; Zeier, W. G., A solid future for battery development. Nat. Energy 2016, 1, 16141.
    (4) Goodenough, J. B.; Kim, Y., Challenges for rechargeable Li batteries. Chem. Mater. 2009, 22, 587-603.
    (5) Shao, Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J. G.; Wang, Y.; Liu, J., Making Li‐air batteries rechargeable: Material challenges. Adv. Funct. Mater. 2013, 23, 987-1004.
    (6) Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S., Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636-11682.
    (7) Kang, H.; Liu, Y.; Cao, K.; Zhao, Y.; Jiao, L.; Wang, Y.; Yuan, H., Update on anode materials for Na-ion batteries. J Mater Chem A 2015, 3, 17899-17913.
    (8) Wang, Z.; Selbach, S. M.; Grande, T., Van der Waals density functional study of the energetics of alkali metal intercalation in graphite. RSC Adv. 2014, 4, 4069-4079.
    (9) Okamoto, Y., Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds. J. Phys. Chem. C 2013, 118, 16-19.
    (10) Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G., A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334, 75-79.
    (11) Xu, Y.; Swaans, E.; Basak, S.; Zandbergen, H. W.; Borsa, D. M.; Mulder, F. M., Reversible Na‐Ion Uptake in Si Nanoparticles. Adv Energy Mater 2016, 6.
    (12) Whittingham, M. S., Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192, 1126-1127.
    (13) Newman, G. H.; Klemann, L. P., Ambient Temperature Cycling of an Na‐TiS2 Cell. J. Electrochem. Soc. 1980, 127, 2097-2099.
    (14) Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783-789.
    (15) Delmas, C.; Braconnier, J.-J.; Fouassier, C.; Hagenmuller, P., Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 1981, 3, 165-169.
    (16) Abraham, K., Intercalation positive electrodes for rechargeable sodium cells. Solid State Ionics 1982, 7, 199-212.
    (17) Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G., Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680-3688.
    (18) Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S., Sodium‐ion batteries. Adv. Funct. Mater. 2013, 23, 947-958.
    (19) Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M., Advanced materials for energy storage. Adv. Mater. 2010, 22.
    (20) Koch, C., Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct. Mater. 1997, 9, 13-22.
    (21) Chen, Y.; Li, C. P.; Chen, H.; Chen, Y., One-dimensional nanomaterials synthesized using high-energy ball milling and annealing process. Sci Technol Adv Mat 2006, 7, 839-846.
    (22) Zhang, D., Processing of advanced materials using high-energy mechanical milling. Prog. Mater Sci. 2004, 49, 537-560.
    (23) Koch, C. C.; Whittenberger, J., Mechanical milling/alloying of intermetallics. Intermetallics 1996, 4, 339-355.
    (24) Shin, H.; Lee, S.; Jung, H. S.; Kim, J.-B., Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill. Ceram. Int. 2013, 39, 8963-8968.
    (25) Tangsathitkulchai, C., Acceleration of particle breakage rates in wet batch ball milling. Powder Technol. 2002, 124, 67-75.
    (26) Li, W.; Hu, S.; Luo, X.; Li, Z.; Sun, X.; Li, M.; Liu, F.; Yu, Y., Confined Amorphous Red Phosphorus in MOF‐Derived N‐Doped Microporous Carbon as a Superior Anode for Sodium‐Ion Battery. Adv. Mater. 2017, 29.
    (27) Zhang, C.; Wang, X.; Liang, Q.; Liu, X.; Weng, Q.; Liu, J.; Yang, Y.; Dai, Z.; Ding, K.; Bando, Y., Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 2016, 16, 2054-2060.
    (28) Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T., An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045-3049.
    (29) Liu, H.; Du, Y.; Deng, Y.; Peide, D. Y., Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732-2743.
    (30) Park, C. M.; Sohn, H. J., Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 2007, 19, 2465-2468.
    (31) Sun, Y.; Liu, N.; Cui, Y., Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.
    (32) Chou, S.-L.; Pan, Y.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X., Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys. Chem. Chem. Phys. 2014, 16, 20347-20359.
    (33) Sun, J.; Zheng, G.; Lee, H.-W.; Liu, N.; Wang, H.; Yao, H.; Yang, W.; Cui, Y., Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano Lett. 2014, 14, 4573-4580.
    (34) Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X., Simply Mixed Commercial Red Phosphorus and Carbon Nanotube Composite with Exceptionally Reversible Sodium-Ion Storage. Nano Lett. 2013, 13, 5480-5484.
    (35) Lee, S. W.; Yabuuchi, N.; Gallant, B. M.; Chen, S.; Kim, B.-S.; Hammond, P. T.; Shao-Horn, Y., High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 2010, 5, 531-537.
    (36) Zhu, Y. J.; Wen, Y.; Fan, X. L.; Gao, T.; Han, F. D.; Luo, C.; Liou, S. C.; Wang, C. S., Red Phosphorus Single-Walled Carbon Nanotube Composite as a Superior Anode for Sodium Ion Batteries. ACS Nano 2015, 9, 3254-3264.
    (37) Xu, G.-L.; Chen, Z.; Zhong, G.-M.; Liu, Y.; Yang, Y.; Ma, T.; Ren, Y.; Zuo, X.; Wu, X.-H.; Zhang, X., Nanostructured black phosphorus/Ketjenblack–multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016, 16, 3955-3965.
    (38) Song, J.; Yu, Z.; Gordin, M. L.; Li, X.; Peng, H.; Wang, D., Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano 2015, 9, 11933-11941.
    (39) Song, J.; Yu, Z.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D.; Walter, T.; Regula, M.; Choi, D.; Li, X., Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014, 14, 6329-6335.
    (40) Sun, J.; Lee, H.-W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y., A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980-985.
    (41) Qian, J.; Wu, X.; Cao, Y.; Ai, X.; Yang, H., High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. 2013, 125, 4731-4734.
    (42) Qian, J.; Qiao, D.; Ai, X.; Cao, Y.; Yang, H., Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931-8933.
    (43) Li, W.; Yang, Z.; Li, M.; Jiang, Y.; Wei, X.; Zhong, X.; Gu, L.; Yu, Y., Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546-1553.
    (44) Chang, W.-C.; Tseng, K.-W.; Tuan, H.-Y., Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes. Nano Lett. 2017, 17, 1240-1247.
    (45) Xu, Z.; Zeng, Y.; Wang, L.; Li, N.; Chen, C.; Li, C.; Li, J.; Lv, H.; Kuang, L.; Tian, X., Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries. J. Power Sources 2017, 356, 18-26.
    (46) Peng, B.; Xu, Y.; Liu, K.; Wang, X.; Mulder, F. M., High Performance and Low Cost Sodium Ion Anode Based on A Facile Black Phosphorus‐Carbon Nanocomposite. ChemElectroChem 2017, 4, 1-6.
    (47) He, H.; Sun, D.; Zhang, Q.; Fu, F.; Tang, Y.; Guo, J.; Shao, M.; Wang, H., Iron-Doped Cauliflower-Like Rutile TiO2 with Superior Sodium Storage Properties. ACS Appl. Mater. Inter. 2017, 9, 6093-6103.
    (48) Bandyopadhyay, S.; Singh, G.; Sandvig, I.; Sandvig, A.; Mathieu, R.; Kumar, P. A.; Glomm, W. R., Synthesis and in vitro cellular interactions of superparamagnetic iron nanoparticles with a crystalline gold shell. Appl. Surf. Sci. 2014, 316, 171-178.
    (49) Jossen, A., Fundamentals of battery dynamics. J. Power Sources 2006, 154, 530-538.
    (50) Sun, Y.; Hu, X.; Luo, W.; Xia, F.; Huang, Y., Reconstruction of conformal nanoscale MnO on graphene as a high‐capacity and long‐life anode material for lithium ion batteries. Adv. Funct. Mater. 2013, 23, 2436-2444.
    (51) Sun, J.; Lee, H.-W.; Pasta, M.; Sun, Y.; Liu, W.; Li, Y.; Lee, H. R.; Liu, N.; Cui, Y., Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Storage Mater. 2016, 4, 130-136.

    QR CODE