簡易檢索 / 詳目顯示

研究生: 陳俊瑋
Chun-Wei Chen
論文名稱: 花生酸分子與聚苯胺導電高分子Langmuir Blodgett Film 穩定快速成膜之探討
指導教授: 劉大佼
Ta-Jo Liu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 132
中文關鍵詞: LB成膜技術花生酸分子LB膜聚苯胺分子LB膜流場觀測動態接觸角布魯司特角顯微儀原子力顯微鏡
外文關鍵詞: Langmuir-Blodgett film, polyaniline, arachidic acid, flow visualization, dynamic contact angles, Brewster angle microscopy, atomic force microscopy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Langmuir Blodgett 技術已廣泛被應用於分子層級薄膜製備之研發,然而對LB膜製備之量產化而言,現今仍受限於其成膜速度緩慢,且品質穩定性不確定,至今無法達到量產化之需求。本論文主要建立一套系統,以進行穩定快速LB 膜之製備。LB成膜種類、成膜速度、成膜轉移率或者成膜品質的好壞將與界面分子的排列情形、所選用的固體基材特性、次亞相(sub-phase)溶液之性質(pH 值、離子的添加),基材與次亞相間接觸角度與次亞相中流場流動情形息息相關。因此、為求穩定快速LB膜之製備,需對其成膜前,成膜期間,與成膜後品質與特性做一詳盡的研究。
    本論文主要選用兩種系統,進行穩定快速成膜之研究,一為兩性分子(amphiphilic molecule)花生酸(AA; arachidic acid); 二為導電高分子聚苯胺( PA; polyaniline)系統。選用兩性分子花生酸作其LB分子膜的沈積,此分子一端具親水基,另一端具疏水基,因此為研究LB成膜之首選。再者、考慮基材特性(親疏水性基材)對LB成膜的影響性,以影像觀測法去探討親疏水性基材進行成膜時,其液相中流場的行為與接觸角的變化,實驗發現此兩種不同性質的基材於液面下流場的行為有截然不同的表現。為求提升LB膜的成膜速度,在次亞相溶液中,分別添加三種不同價數的離子,分別以一價鉀離子、二價鋇與鎘離子以及三價鋁離子,進行花生酸 LB 膜的沈積,實驗發現當使用二價陽離子當作其次亞相(sub-phase)時,降低了花生酸LB膜之成膜壓力,且其成膜速度可提高至60 mm/min,成膜轉移率均在0.9,此項因素來自於二價離子與梭酸根離子形成皂化物(soap)所致。並且經由原子力顯微鏡 (AFM) 圖譜的量測與判斷,二價陽離子存在下之成膜品質,在3µm x 3µm掃瞄區域下其粗糙度約1.3 nm。
    之後,鎖定具有導電性質的聚苯胺分子作其成膜速度與品質之研究。綜觀目前國內外研究學者針對聚苯胺導電分子LB膜的研究,分子膜之成膜速度皆在5mm/min之下,對量產化而言無疑是一大阻力,如何提升此分子成膜速度與品質將是一大挑戰。因此利用複合膜的概念,將原本平躺在氣液界面上之聚苯胺分子與站立型態的花生酸分子作一混和,以增進分子膜在界面上之穩定性進而增進成膜速度。藉由布魯斯特顯像儀(Brewster angle microscopy) 觀測分子於氣液界面上組成之情形,實驗觀測後發現在固定比例下以50% PA + 50% AA 做混合,可於氣液界面上得到一平整分子膜的結構,且此種比例的混和也提供較佳的凝聚力(cohesion)。使用親水基材進行成膜實驗,發現其成膜速度可至30mm/min,成膜轉移率趨近於1,固體基材上之成膜品質以原子力顯微鏡做判別,在3µm x 3µm掃瞄區域下其粗糙度約2.6 nm。其歸功於花生酸分子幫助了聚苯胺分子使其在阻隔棒壓縮的過程中,氣液界面膜排列的更加緊密與穩定所致。


    Langmuir-Blodgett (LB) film deposition technique has received wide attention owing to its potential applications for monolayer or ultra-thin film production. Until now, LB technique remains only a laboratory tool with very limited industrial applications due to its slow deposition speed and lack of reliability. The aim of the present study is to experimentally investigate the stable and higher deposition speed for LB film deposition. There are some factors to affect the LB film deposition which include arrangement of interface molecules, dynamic contact angles, fluid motion and characteristic of substrate and sub-phase. Therefore, in this paper has developed a systematic methodology involving several experimental steps and measurements before, during and after the LB film deposition process, to ensure the production of the LB film deposition.
    First, we are concerned with the LB film deposition of arachidic acid, particularly the maximum withdrawal speed with acceptable transfer ratio. A Langmuir minitrough that provides the surface pressure vs molecular area (□-A) curve and a flow visualization technique were served as tools to investigate the maximum withdrawal speed with negligible water entrainment. The effect of hydrophobic and hydrophilic substrates and the addition of four different ions, eg, K+,Ba2+,Cd2+ and Al3+, on the withdrawal speed were examined. It was found that the “transition point” from liquid state to solid state on the □-A curve can serve as a clear indicator on the maximum withdrawal speed, i.e., the lower the transition point, the higher the maximum withdrawal speed. Owing to the “soap effect” of the divalent ions Ba2+ or Cd2+, stable fluid motion for successful LB film deposition can be increased to 60mm/min. The quality of LB deposited film was examined with atomic force microscopy (AFM).
    An experimental study was also carried out to examine the stable LB film deposition of mixtures of Polyaniline (PA) and Arachidic acid (AA) at different concentration ratios. Images of the PA/AA composite materials at air-liquid interface, based on the Brewster angle microscopy, revealed that a 50/50 concentration ratio of PA/AA composite layer produced the best LB film structure. The feasibility of LB film deposition was determined from dynamic contact angles which were measured by a flow visualization technique. The quality of the deposited film was also judged by the transfer ratio and the atomic force microscopy (AFM) images. The effect of pH was also examined, and it was found that the LB film deposition for the PA/AA system could only be carried out in a narrow range of pH. It was found that the deposited LB film of the PA/AA system had a high transfer ratio and improved surface roughness at the deposition speed 30mm/min.

    目 錄 摘要………………………………………………………………Ⅰ 目錄……………………………………………………………....Ⅵ 表之索引…………………………………………………………Ⅹ 圖之索引………………………………………………………....XI 一、 緒論……………………………………………………….1 1.1研究背景……………………………………………....1 1.2 LB 技術之發展………………………………..……...3 1.3 LB技術之應用………………..……………………....4 1.3研究目的……………………………………………....5 二、 文獻回顧………………………………………………....9 2.1 LB膜的形成…………………………………………...9 2.2 Langmuir 分子層的相變與崩潰情形………………..10 2.3 LB膜沈積品質與種類………………………………..12 2.4 離子存在下之Fatty acid LB films…………………...13 2.5 LB技術製備導電高分子……………………………..15 2.6 LB技術製備聚苯胺分子膜…………………………..16 2.7 脂肪酸分子與聚苯胺分子複合膜…………………...18 2.8 水層滲入對LB膜品質的影響……………………....19 2.9 接觸角、三相接觸線與LB膜沈積之關連………......20 三、實驗方法……………………………………………….......34 3.1 分子層於氣液界面之影像觀測……………………….34 3.1-1 Langmuir 槽清潔度測試…………………………...34 3.1-2花生酸分子、聚苯胺分子與花生酸分子-聚苯胺 分子複合膜BAM影像的觀測…………………….35 3.2單分子層表面壓力-單分子佔據面積曲線量測……….35 3.2-1花生酸分子□-A 曲線的量測……………………….35 3.2-2 聚苯胺分子與花生酸分子-聚苯胺分子複合膜 □-A 曲線的量測……………………………….......37 3.3成膜基材的前處理與表面改質…………………….......38 3.4 LB單分子薄膜的製備………………………………….38 3.5 流場觀測……………………………………………......39 3.5-1液體相中之流場觀測……………………………......40 3.5-2基板插入與抽出時,基板與液面間動態接觸角 量測………………………………………………….41 3.6 實驗儀器……………………………………………......41 3.7 實驗藥品與耗材……………………………………......47 四、結果與討論………………………………………...............61 4.1 分子膜於氣液界面行為之研究…………………………63 4.1-1 氣液界面分子膜影像探討…………………………...63 4.1-2花生酸分子(AA)在不同次亞相下之π-A 曲線….......65 4.1-3聚苯胺分子(PA)與複合膜(PA/AA) π-A 曲線…….....68 4.2 LB膜成膜行為之探討…………………………………...70 4.2-1親疏水性基材的判定………………………………....71 4-2-2花生酸分子成膜之探討………………………………72 4-2-3親水性基材對花生酸LB膜之成膜情形與流場觀 測現象…………………………………………………72 4-2-4疏水性基材對花生酸LB膜之成膜情形與流場觀 測現象…………………………………………………74 4-2-5添加離子對花生酸分子成膜的影響性………………76 4-2-6交界面之吸附及配向行為…………………………....79 4-2-7吸附之熱力學理論---Gibbs吸附方程式…………......81 4-2-8聚苯胺分子與聚苯胺-花生酸分子複合膜之成膜 探討…………………………………………………….83 4-2-9調整次亞相中溶液酸鹼度對成膜之影響.....................86 4.3 LB膜成膜後品質判定與相關物性檢測………………….88 4.3-1 LB分子膜原子力顯微儀之品質判定……………........88 4-3-2花生酸LB films IR(Infrared ray)光譜分析與EDS 量測…………………………………………………......90 4.3-3聚苯胺-花生酸分子複合膜光電性質分析………….....90 五、結論………………………………………………………......126 六、參考文獻…………………………………………………….129 表之索引 表2.1 相關於聚苯胺分子與其複合膜研究文獻之實驗條件……..24 表2.2 相關於聚苯胺分子與其複合膜研究文獻之實驗結果……..25 表3.1 觀測氣液界面分子膜之實驗條件…………………………..49 表3.2 花生酸分子在不同離子存在下之實驗操作條件…………..50 表3.3 聚苯胺分子與聚苯胺-花生酸分子複合膜之實驗操作 參數…..……………………………………………………….51 表4.1 對不同系統下之成膜速度、沈膜壓力、分子佔據面積 與崩潰壓………..…………………………………………….92 表 4.2 不同基材之靜態接觸角與表面能值………………………..93 表 4.3 親疏水基材之靜態與動態接觸角…………………………..93 表 4.4 疏水性基材在不同系統下之動態接觸角值………………..94 表 4.5 親水性基材在DI、DI+PA系統、DI+PA+AA系統之動 態接觸角……………………………………………………....95 表 4.6 DI/PA/AA 系統在不同pH值下之動態接觸角…………...95 表 4.7各基材元素分析定量值表……………………………………96 圖之索引 圖(1.1) 高分子發光二極體示圖..………………………………..…….7 圖(1.2) Langmuir Blodgett成膜技術大致步驟圖……………………..8 圖(2.1) 雙極性分(amphiphile)……………………………...………....26 圖(2.2) 親疏水性基材沈積示圖..……………………………………..27 圖(2.3) Langmuir 分子層的相變畫圖…..………………………….....28 圖(2.4) LB膜沈積的三種類型…...…………………………………....29 圖(2.5) 常見之導電高分子結構圖…..………………………………..30 圖(2.6) 聚苯胺分子與花生酸分子複合膜UV光譜圖……………....31 圖(2.7) 聚苯胺分子與花生酸分子複合膜UV光譜吸收度對 LB成膜成膜層數關係圖.…………………………………….31 圖(2.8) 下插固體基板其液槽中流動情形示意圖…..………………..32 圖(2.9) 上拉固體基板其液槽中流動情形示意圖…..………………..32 圖(2.10) LB成膜操作視窗…..………………………………………...33 圖(3.1) 光源打入液膜示意圖….....…………………………………...52 圖(3.2) Micro-BAM機臺於LB 槽上之實驗裝置…..………………..53 圖(3.3) 聚苯胺的三種型態……………………………………………54 圖(3.4) AFM機臺量測時探針接近探測表面時所產生多種吸引力 與排斥力的現象………………………………………………..55 圖(3.5) 流場觀測實驗裝置示意圖…..……………………………....56 圖(3.6) 分子膜於氣液界面上之動態接觸角觀測設備……………..57 圖(3.7) Nima 312D軟體操作界面…..……………………………….58 圖(3.8) 原子力顯微鏡之示意圖……..………………………………59 圖(3.9) 四點探針系統示意圖..………………………………………60 圖(4.1) 去離子水系統之BAM影像圖……………………………...97 圖(4.2) AA酸系統之BAM影像圖…………………………………..98 圖(4.3) PA酸系統之BAM影像圖…………………………………...99 圖(4.4) 40%PA / 60%AA酸系統之BAM影像圖…………………..100 圖(4.5) 50%PA / 50%AA酸系統之BAM影像圖………………….101 圖(4.6) 60%PA / 40%AA酸系統之BAM影像圖………………….102 圖(4.7) AA酸在不同離子系統下之□-A曲線圖…………………...103 圖(4.8) AA酸在Ba與Cd離子系統下之□-A曲線圖……………..104 圖(4.9) PA、PA/AA、AA酸系統之□-A曲線圖…………………...105 圖(4.10) PA/AA系統在不同表面壓下之鬆弛曲線圖……………...106 圖(4.11) Wetting 之圖譜示意圖…………………………………….107 圖(4.12) 親疏水性基材上拉之流場觀測圖………………………..108 圖(4.13) 親疏水性基材下插之流場觀測圖………………………..109 圖(4.14) 疏水性基材在AA/Ba系統下之動態接觸角觀測圖與 相對應流場示意圖…………………………………………110 圖(4.15) 疏水性基材在AA/Al系統下之動態接觸角觀測圖與 相對應流場示意圖…………………………………………111 圖(4.16) AA/Ba 系統之成膜速度與成膜轉移率關係圖………….112 圖(4.17) □ 及 □ 兩相間交界面之示意圖………………………...113 圖(4.18) 各類型物質表面張力對濃度關係圖……………………....113 圖(4.19) 親水性基材在PA系統下之動態接觸角觀測圖與相對應流場示意圖………………………………..……………………..114 圖(4.20) 親水性基材在PA/AA系統下之動態接觸角觀測圖與相對應流場示意圖………………………………..………………..115 圖(4.21) PA/AA系統之成膜速度與成膜轉移率關係圖…………….116 圖(4.22) AA/Ba與AA/Cd系統之pH值與成膜轉移率關係圖…….117 圖(4.23) 50% PA / 50% AA 系統之pH值與成膜轉移率關係圖……118 圖(4.24) AA酸LB膜在不同製程條件下之AFM圖譜……………..119 圖(4.25) PA分子LB膜在不同製程條件下之AFM圖譜……………120 圖(4.26) PA/AA複合分子LB膜在不同製程條件下之AFM圖譜…121 圖(4.27) AA酸LB膜之IR光譜圖…………………………………..122 圖(4.28) AA酸LB膜在疏水性基材上之EDS分析…………………123 圖(4.29) 7層PA/AA酸LB膜經酸參雜前後顏色的差異…………..124 圖(4.30) 7層PA/AA酸LB膜之UV光譜分析……………………….125

    [1] 尹邦躍,「奈米時代」,五南,2002.

    [2] M. Zansiti and J. West, Havard Business Review., (1996).

    [3] G. Roberts, Langmuir-Blodgett Films, Plenun Press, New York, p137 (1990).

    [4] V. Saxena and B.D. Malhotra, Current Applied Physics., 3, 293 (2003).

    [5] T. Li, M. Mitsuishi, T. Miyashita, Thin Solid Film., 389, 267 (2001).

    [6] M.S. Zhou and R.F. Chu, US Patent., 5,795,699 (1998).

    [7] I. Langmuir, J. Am Chem. Soc., 39, 1848 (1917).

    [8] D.J. Shaw., Introduction to Colloid and Surface Chemistry., 4th edition (1991).

    [9] J.F. Baret, H. Hasmonay and J. L. Firpo, Chem. Phys. Lipids., 30, 177 (1982).

    [10] G.L. Gaines, Jr, Insoluble Monolayer at Liquid-Gas Interface, Interscience publishers, New York (1966).

    [11] W.D. Harkins, T.F. Young and E. Boyd, Chem. Phys., 8, 95 (1940).

    [12] R.D. Newman, J. Colloid Interface Sci., 53, 161 (1975).

    [13] A. Angelova, F. Penacorada, B. Stiller, T. Zetzsche and L. Brehmer, J. Phys. Chem. 98, 6790 (1994).

    [14] M. Leonard, R.M. Morelis and P.R. Coulet, Thin Solid Films., 260, 227 (1995).

    [15] K.B. Blodgett, J. Am. Chem. Soc., 57, 1007 (1935).

    [16] K.B. Blodgett, I. Langmuir, Phys. Rev., 51, 964 (1937).

    [17] J.W. Ellis, J.L. Pauley, J. Colloid Sci., 19, 755 (1964).

    [18] J.G. Petrov, I. Kuleff, D.J. Patikanov, J. Colloid Interface Sci., 88, 29 (1982).

    [19] M.R. Buhanenko, M.J. Grundy, R. M. Richardson, S.J. Roser, Thin Solid Films 159, 253 (1988).

    [20] C. Vogel, J. Corset, M.J. Dupeyrat, J. Chim. Phys., 76, 909 (1979).

    [21] C. Vogel, J. Corset, F. Billoudet, M. Vincent, M.J. Dupeyrat, J. Chim. Phys., 77, 947 (1980).

    [22] D.A. Outka, J. Stohr, J.P. Rabe, J.P. Swalen, H.H. Rotermund, Phys. Rev. Lett., 59, 1321 (1987).

    [23] M. Yazdanian, H. Yu, G. Zografi, Langmuir., 6, 1093 (1990).

    [24] S. Ye, H. Noda, T. Nishida, S. Morita and M. Osawa, Langmuir., 20, 357 (2004).

    [25] J.G. Petrov, H. Kuhn, D. Mobius, J. Colloid Interface Sci., 73, 66 (1980).

    [26] V. Saxena, B.D. Malhotra, Current Applied Physics 3 293 (2003).

    [27] H. Shirakawa, E. J. Louis, A.G. MacDiarmid, C.K. Chiang, and A. J. Heeger, J. Chem. Soc. Chem. Comm., 579 (1977).

    [28] P.L. Burn, D.D.C. Bradley, A.R. Brown, R.H. Friend, A.B. Holmes, Synth. Met. 41, 261 (1991).

    [29] D.A. Wrobleski, B.C. Benicewicz, K.G. Thompson, C.J. Bryan, J. Am. Chem. Soc. Polm. Prepr. 35, 265 (1994).

    [30] D.W. Cheong, W.H. Kim, L.A. Samuelson, J. Kumar, S.K. Tripathy, Macromolecules 29, 1416 (1996).

    [31] T. Iyoda, M. Ando, T. Kaneko, A. Ohtani, T. Shimidzu, K. Honda, Langmuir 3, 1169 (1986).

    [32] S.R. Kim, S.A. Choi, J.D. Kim, K.J. Kim, C. Lee, S.B. Rhee, Synthetic Metals 71, 2027 (1995).

    [33] M. Bardosova, B. Stiller, R. H. Tredgold, M. Woolley, P. Hodge, L. Brehmer, Thin Solid Films 284, 450 (1996).

    [34] R. Racicot, R.L. Clark, H.B. Liu, S.C. Yang, M.N. Alias, R. Brown, Spie Proc., 2528, 251 (1995).

    [35] T. Kobayashi, H. Yoneyama, H. J. Tamura, J. Electrochem. Interfacial Electrochem.,161,419 (1984).

    [36] R. B. Seymour, Conductive Polymer., 23 (1981).

    [37] M.K. Ram, N.S. Sundaresan and B.D. Malhotra, J. Phys. Chem., 97, 11580 (1993).

    [38] K. Ramanathan, M.K. Ram, B.D. Malhotra and A.S.N. Murthy, Mater. Sci. Eng., C3, 159 (1995).

    [39] T. L. Porter, D. Thompson, M. Bradley, Thin Solid Films., 288, 268 (1996).

    [40] A. Dhanabalan, R.B. Dabke, N. Prasanth Kumar, S.S. Talwar, S.S. Major, R. Lal, A. Q. Contractor, Langmuir., 13, 4395 (1997).

    [41] R. B. Dabke, A. Dhanabalan, S. Major, S. S. Talwar, R. Lal, A. Q. Contractor, Thin Solid Films., 335, 203 (1998).

    [42] P. Granholm, J. Paloheimo, and H. Stubb, Phys. Rev. B 55, 13658 (1997).

    [43] J. H. Cheung and M. F. Rubner, Thin Solid Films 244, 990 (1994).

    [44] A. Dhanabalan, A. Riul Jr. and O.N. Oliveira, Jr. ,Supramolecular Science., 5, 75 (1998).

    [45] A. Dhanabalan, R.B.Dabke, S. N. Datta, N. Prasanth Kumar, S.S. Major, S.S. Talwar, A. Q. Contractor Thin Solid Films., 295, 255 (1997).

    [46] A. Riul Jr., A. Dhanabalan, M.A. Cotta, P.S.P. Herrmann, L.H.C. Mattoso, A.G. MacDiarmid, O.N. Oliveria Jr., Synthetic Metals 101, 830 (1999).

    [47] J.H. Schulman, R.B. Waterhouse and J.A. Spink, Kolloid-Z., 146, 77 (1956)

    [48] M. P. Srinivasan, B. G. Higgins, P. Stroeve, S. T. Kowel, Thin Solid Films., 159, 191 (1988)

    [49] L.Y. Zhang, M.P. Srinivasan, Colloids Surf., 193, 15 (2001).

    [50] T.D. Blake and J.M. Haynes, Progress in Surface and Membrane Science., Volume 6. New York: Academic Press (1973).

    [51] J.J. Bikerman, Proc. R. Soc. Lond. Ser. A Mater. Phys. Sci., 170, 130 (1939).

    [52] G.L. Gaines, J. Colloid Interface Sci., 59, 438 (1977).

    [53] C. Huh, L.E. Scriven, J. Colloid Interface Sci., 35, 85 (1971).

    [54] M.J. Savelski, S.A. Shetty, W.B. Kolb, R.L. Cerro, J. Colloid Interface Sci., 176, 117 (1995).

    [55] M. E. Diaz, R. L. Cerro., Thin Solid Films., 460 274 (2004).

    [56] P.G. de Gennes, Colloid Polym. Sci., 264, 463 (1986).

    [57] R.L. Cerro, Journal of Colloid and Interface Science, 257 276-283 (2003).

    [58] M.E. Diaz and R. L. Cerro, Thin Solid Films., 485 224 (200

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE