簡易檢索 / 詳目顯示

研究生: 鄭庭璞
Cheng, Ting-Pu
論文名稱: 以mPEG-Ala-Lys自組裝形成之酸鹼敏感型胺基酸交聯微胞作為阿黴素(DOX)傳遞系統之應用
pH-sensitive Self-assembled Crosslinked Polypeptide Micelle for Doxorubicin Delivery
指導教授: 朱一民
Che, I-Ming
口試委員: 黃振煌
Huang, Chen-huang
林世傑
Lin, Shih-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 54
中文關鍵詞: 酸鹼敏感胺基酸微胞藥物釋放阿黴素DOX癌症治療
外文關鍵詞: pH-sensitive polypeptide micelle
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物可降解的奈米微胞作為藥物載體可以有效地將藥物輸送到目標部位,從而增加治療效果,同時最大程度地減少副作用,因此在學術界被廣泛重視。而使用肽鍵鍵結形成的聚胺基酸高分子材料具有良好的生物相容性及生物可分解性質。
    阿黴素(DOX)為目前臨床應用廣泛的抗癌藥物,但卻對心肌細胞有害,因此設計奈米微胞作為藥物載體將阿黴素包覆其中從而降低其副作用。
    本研究以mPEG-P(Ala)-P(Lys)和mPEG-P(Ala)-P(Asp)做為奈米微胞的藥物載體,藉由NMR與GPC分析高分子的結構與分子量證實合成成功。兩親性團聯共聚物在水中能自組裝形成微胞,製程方便快速。親水端選擇methoxy poly(ethyl glycol) (mPEG)是因其在體內具有優秀的隱匿性,可避免藥物太快被排除掉;而疏水端以聚丙胺酸(Ala)為主,尾端再分別以離胺酸(Lys)和天門冬胺酸(Asp)來進行修飾,此結構在體內降解後的產物為胺基酸分子,對人體細胞毒性極小,且尾端修飾的離胺酸(Lys)和天門冬胺酸(Asp)使其具有pH敏感特性,可做為癌症藥物釋放載體。根據其粒徑大小對酸鹼敏感的變化來看,本研究選擇mPEG-P(Ala)-P(Lys)作為後續的藥物包覆實驗高分子。
    為了提高微胞穩定性,選擇戊二醛作為氨基交聯劑,使微胞結構更加穩定,而0.2 wt%的交聯濃度的微胞可得到最大包覆度。在最佳經濟效益的製程下,藥物包覆度為3.07 wt%,藥物包覆效率可達8.19 wt%。微胞粒徑可在水中穩定維持至少五天,大小約為300 nm。
    體外藥物釋放結果顯示,DOX-loaded NPs可在酸性環境中有效釋放,同時減少在中性環境下的釋放。而體外細胞毒性測試顯示DOX-loaded NPs具有良好的癌細胞毒殺能力。因此,使用mPEG-P(Ala)-P(Lys)交聯微胞作為DOX包覆載體來進行癌症治療具有其優勢與良好發展潛力。


    Biodegradable nanoparticles are widely used as a drug carrier to effectively deliver drugs to target sites, thereby increasing the therapeutic effect while minimizing side effects. The polyamide polymer material formed by the peptide bond bonding has good biocompatibility and biodegradable properties.
    Doxorubicin is a widely used anticancer drug in clinical practice, but it is harmful to cardiomyocytes. Therefore, nanoparticles are designed to use as a drug carrier to encapsulate doxorubicin and reduce its side effects.
    In this study, mPEG-P(Ala)-P(Lys) and mPEG-P(Ala)-P(Asp) were used as drug carriers for nanoparticles. The structure and molecular weight of the polymer were confirmed by NMR and GPC. The amphiphilic copolymer can self-assemble to become micelles in water, and the process is convenient and rapid. Choose methoxy poly(ethyl glycol) (mPEG) as hydrophilic chain because of it excellent hidden property in the body, which can prevent the drug from being eliminated too quickly; while the hydrophobic chain is mainly composed of poly-alanine (Ala), and the tail ends are respectively modified by lysine (Lys) and aspartic acid (Asp). The structure of hydrophilic chain after degradation in vivo will become amino acid, which has minimal cytotoxicity to human cells, and the tail-modified lysine (Lys) and aspartic acid (Asp) make it sensitive to pH and can be used as a carrier for cancer drug release. According to the change of of the particle size to pH environment , mPEG-P(Ala)-P(Lys) was selected as the subsequent drug encapsulation experiment.
    In order to improve the stability of micelles, glutaraldehyde was selected as the amino crosslinking agent to make micelles structure more stable, and the 0.2 wt% crosslinker concentration can get the maximum drug capacity. Under the process with the best economic benefit, the drug capacity is 3.07 wt%, and the drug efficiency can reach 8.19 wt%. The micelles size can be kept stable in water for at least five days, and the size is about 300 nm.
    In vitro drug release shows that DOX-loaded NPs can be effectively released in an acidic environment, while reducing the release in a neutral environment. In vitro cytotoxicity tests show that DOX-loaded NPs have good cancer cell cytotoxicity. Therefore, using mPEG-P(Ala)-P(Lys) crosslinked micelles as a DOX encapsulation carrier for cancer treatment has its advantages and good development potential.

    摘要 I Abstract III 目錄 V 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1生物可降解性材料 1 1.1.1天然生物可降解聚合物 2 1.1.2合成生物可降解聚合物 2 1.2藥物釋放系統 2 1.2.1藥物控制釋放系統之機制 4 1.3高分子奈米微胞 5 1.4腫瘤組織構造與奈米藥物傳輸載體之關係 8 1.5 阿黴素(Doxorubicin ,DOX) 10 第二章 研究動機 12 第三章 實驗藥品與儀器 14 3.1實驗藥品 14 3.2實驗儀器 16 第四章 實驗材料與方法 18 4.1實驗架構圖 18 4.2 mPEG-P(Ala)-P(Lys)合成 19 4.2.1 mPEG末端改質(OH基改NH2) 19 4.2.2丙胺酸環化反應(L-alanine N-carboxyl anhydride) 19 4.2.3離胺酸環化反應(H-Lys(Z)-OH N-carboxyl anhydride) 20 4.2.4 mPEG-P(Ala)開環聚合反應 20 4.2.5 mPEG-P(Ala)-P(Lys(Z)) 開環聚合反應 20 4.2.6 mPEG-P(Ala)-P(Lys(Z))去保護基反應 21 4.3 mPEG-P(Ala)-P(Lys)合成 22 4.3.1 mPEG末端改質(OH基改NH2) 22 4.3.2丙胺酸環化反應(L-alanine N-carboxyl anhydride) 22 4.3.3 天門冬胺酸環化反應(β-benzyl L-Aspartic acid N-carboxyl anhydride) 22 4.3.4 mPEG-P(Ala)開環聚合反應 22 4.3.5 mPEG-P(Ala)-P(Asp(Bzyl)) 開環聚合反應 22 4.3.6 mPEG-P(Ala)- P(Asp(Bzyl))去保護基反應 23 4.4三嵌段共聚合物之結構鑑定與分析 23 4.4.1氫原子核磁共振光譜鑑定((_^1)H-NMR) 23 4.4.2凝膠滲透層析儀(Gel permeation chromatography, GPC) 24 4.5高分子微胞製備與性質測定 24 4.5.1高分子交聯奈米微胞之製備 24 4.5.2臨界微胞濃度測定(Critical micelle concentration,CMC) 25 4.5.3動態光散射儀(Dynamic light scattering,DLS) 26 4.5.4表面電位分析(Zeta Potential) 26 4.5.5穿透式電子顯微鏡(Transmission electron microscope,TEM) 27 4.6藥物包覆與釋放 27 4.6.1 mPEG-P(Ala)-P(Lys)包覆阿黴素之包覆方式(DOX-loaded NPs) 27 4.6.2 Doxorubicin標準濃度檢量線建立 28 4.6.3藥物包覆量與包覆率測試 28 4.6.4體外藥物釋放 29 4.6.5微胞穩定度分析 29 4.7細胞實驗 30 4.7.1細胞培養 30 4.7.2毒性測試 31 第五章 實驗結果與討論 33 5.1三嵌段共聚合物之結構鑑定與分析 33 5.1.1氫原子核磁共振光譜鑑定結果分析((_^1)H-NMR) 33 5.1.2凝膠滲透層析儀結果分析(GPC) 35 5.2高分子微胞製備與性質測定 35 5.2.1臨界微胞濃度測定結果分析(CMC) 35 5.2.2空白微胞粒徑結果分析(DLS) 37 5.3 mPEG-P(Ala)-P(Lys)包覆阿黴素(DOX)之微胞結構與性質分析 40 5.3.1藥物包覆度測試 40 5.3.2藥物包覆度對藥物包覆效率比較 41 5.3.3微胞粒徑分析 42 5.3.4微胞型態觀察 42 5.3.5表面電位分析 43 5.3.6微胞穩定度分析 44 5.3.7體外藥物釋放 45 5.4細胞毒性實驗 46 5.4.1材料毒性測試 46 5.4.2癌細胞毒殺測試 48 第六章 結論與未來展望 51 6.1結論 51 6.2未來展望 52 第七章 參考資料 53

    1. Li, S., Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. Journal of Biomedical Materials Research, 1999. 48(3): p. 342-353.
    2. Lloyd, A.W., Interfacial bioengineering to enhance surface biocompatibility. Medical device technology, 2002. 13(1): p. 18-21.
    3. Katti, D.S., et al., Toxicity, biodegradation and elimination of polyanhydrides. Advanced Drug Delivery Reviews, 2002. 54(7): p. 933-961.
    4. Uhrich, K.E., et al., Polymeric Systems for Controlled Drug Release. Chemical Reviews, 1999. 99(11): p. 3181-3198.
    5. Lin, C.-C. and A.T. Metters, Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 2006. 58(12): p. 1379-1408.
    6. Amsden, B., Solute Diffusion within Hydrogels. Mechanisms and Models. Macromolecules, 1998. 31(23): p. 8382-8395.
    7. Siepmann, J. and N.A. Peppas, Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, 2012. 64: p. 163-174.
    8. Kwon, G.S. and K. Kataoka, Block copolymer micelles as long-circulating drug vehicles. Advanced Drug Delivery Reviews, 1995. 16(2): p. 295-309.
    9. Kwon, G.S. and T. Okano, Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews, 1996. 21(2): p. 107-116.
    10. Kwon, G.S., Diblock Copolymer Nanoparticles for Drug Delivery. 1998. 15(5): p. 32.
    11. Yang, L. and P. Alexandridis, Physicochemical aspects of drug delivery and release from polymer-based colloids. Current Opinion in Colloid & Interface Science, 2000. 5(1): p. 132-143.
    12. Allen, C., D. Maysinger, and A. Eisenberg, Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces, 1999. 16(1): p. 3-27.
    13. Cammas-Marion, S., T. Okano, and K. Kataoka, Functional and site-specific macromolecular micelles as high potential drug carriers. Colloids and Surfaces B: Biointerfaces, 1999. 16(1): p. 207-215.
    14. Chung, J.E., M. Yokoyama, and T. Okano, Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. Journal of Controlled Release, 2000. 65(1): p. 93-103.
    15. Topp, M.D.C., et al., Thermosensitive Micelle-Forming Block Copolymers of Poly(ethylene glycol) and Poly(N-isopropylacrylamide). Macromolecules, 1997. 30(26): p. 8518-8520.
    16. Yokoyama, M., et al., Selective Delivery of Adiramycin to a Solid Tumor Using a Polymeric Micelle Carrier System. Journal of Drug Targeting, 1999. 7(3): p. 171-186.
    17. Maeda, H., et al., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release, 2000. 65(1): p. 271-284.
    18. Matsumura, Y. and H. Maeda, A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Research, 1986. 46(12 Part 1): p. 6387-6392.
    19. Liu, Y., et al., pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. Asian Journal of Pharmaceutical Sciences, 2013. 8(3): p. 159-167.
    20. Zhu, H., et al., Doxorubicin Redox Biology: Redox Cycling, Topoisomerase Inhibition, and Oxidative Stress. Reactive oxygen species (Apex, N.C.), 2016. 1(3): p. 189-198.
    21. Wang, J.C., Cellular roles of DNA topoisomerases: a molecular perspective. Nature Reviews Molecular Cell Biology, 2002. 3(6): p. 430-440.
    22. Arola, O.J., et al., Acute Doxorubicin Cardiotoxicity Involves Cardiomyocyte Apoptosis. Cancer Research, 2000. 60(7): p. 1789-1792.
    23. Zhang, Y.-W., et al., Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Archivum Immunologiae et Therapiae Experimentalis, 2009. 57(6): p. 435-445.
    24. Qu, J.-B., et al., Swollen Micelles for the Preparation of Gated, Squeezable, pH-Responsive Drug Carriers. ACS Applied Materials & Interfaces, 2017. 9(16): p. 13865-13874.
    25. Torchilin, V., Tumor delivery of macromolecular drugs based on the EPR effect. Advanced Drug Delivery Reviews, 2011. 63(3): p. 131-135.
    26. Deng, H., et al., PEG-b-PCL Copolymer Micelles with the Ability of pH-Controlled Negative-to-Positive Charge Reversal for Intracellular Delivery of Doxorubicin. Biomacromolecules, 2014. 15(11): p. 4281-4292.
    27. Soheyla Honary, F.Z., Effect of Zeta Potential on the Properties of Nano-Drug
    Delivery Systems - A Review (Part 2). Tropical Journal of Pharmaceutical Research, 2013. 12 (2): : p. 265-273.

    QR CODE