簡易檢索 / 詳目顯示

研究生: 黃俊琪
Huang, C. C.
論文名稱: 探討一個多參數Brusselator模型之分支點及其解路徑之延拓
Numerical Investigation for Branching Points and the Continuation of Solution Paths of A Brusselator Model with Multiple Parameters.
指導教授: 簡國清博士
Jen, K. C.
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 111
中文關鍵詞: 隱函數定理打靶法割線預測法Liapunov-schmidt降階法牛頓迭代法虛擬弧長延拓法分支點轉彎點分歧點解分支分歧圖
外文關鍵詞: Implicit function theorem, Shooting method, Secant-predictor method, Newton’s interative method, Liapunov-Schmidt reduction method, pseudo-arclength continuation method, Branching point, Turning point, Bifurcation point, Solution branches, Bifurcation diagram
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文中主要在探討具邊界值非線性常微分方程組之轉彎點,分歧點與其解分支之結構.
    我們利用打靶法, Rung-Kutta積分公式與牛頓迭代法推導計算出分支點,再運用分歧點測試定理來判斷是分歧點或轉彎點,接著,在隱函數定理下,運用Liapunov-schmidt降階法,虛擬弧長延拓法,割線猜測法及牛頓迭代法等數值方法,來延拓出所有通過分歧點的解分支路徑.
    最後,我們將改變其中一個參數,而將其他的參數固定,分別延拓出通過分支點的解分支路徑圖,有助於我們進一步瞭解非線性分歧問題的分歧現象與定性上的變化.


    This thesis mainly explores the structure of turning points, bifurcation points and solution branches of a nonlinear ordinary differential equation with boundary values.

    Through the shooting method, Rung-Kutta integral formula and Newton’s interactive method, the branching points are deduced and calculated out, and then using bifurcation test theorem to determine whether bifurcation points or turning points. Furthermore, within the implicit function theorem, through Liapunov-Schmidt reduction, pseudo-arclength continuation, secant-predictor and Newton’s interactive methods, all solution branch paths passing through bifurcation points are extended out.

    Lastly, the study goes further by only changing one variable while fixing the rest variables to extend out respectively the solution branch path diagrams passing through branching points. The results provide the helps in further understanding of the bifurcation phenomenon and qualitative changes of the nonlinear bifurcation subject.

    第一章 緒論 1 第二章 分歧理論與虛擬弧長延拓法 4 2.1 分歧問題 ………………………………………………… 4 2.2 分歧理論 ……………………………………………… 6 2.3 局部延拓法 ……………………………………………… 8 2.3.1 預測法 …………………………………………… 9 2.3.2 解法 ………………………………………………10 2.4 虛擬弧長延拓法 ………………………………………… 12 第三章 具邊界值常微分方程組之分歧點與解分支 14 3.1 分支點之求法 ………………………………………… 14 3.2 找出分歧點 ……………………………………………… 30 3.3 選取過分歧點的解分支延拓方向 …………………… 32 3.3.1 Liapunov-schmidt 降階法 …………………… 32 3.3.2選取解分支延拓方向 …………………………… 35 3.3.3選取各解分支延拓方向的初始猜值 …………… 38 3.4 解分支的延拓 ………………………………………… 40 3.4.1 虛擬弧長延拓法之數值計算 …………………… 40 3.4.2割線預測法與牛頓迭代法求解路徑 …………… 41 3.5 演算法 ………………………………………………… 43 第四章 數值實驗---解路徑之探討 47 實驗一:令 探討各種 值的分支點與解路徑之延拓 ……48 實驗二:令 探討各種 值的分支點與解路徑之延拓 ……66 實驗三:令 探討各種 值的分支點與解路徑之延拓 ……84 實驗四:相似圖比較 ……………………………………………101 第五章 結論 106 參考文獻 108

    [1] Keller,H.B. and Langford,W.F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems, Arch. Rational Mech. Anal., 48, pp.83-108,(l972).
    [2] Crandall,M.G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P.H. Rabinowitz, Academic Press, pp. 1-35,(1977).
    [3] Crandall,M.G. and Rabinowitz,P.H., Mathematical Theory of Bifurcation,Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos,C. and Bessis,D., NATO Advanced Study Institute Series,(1979).
    [4] Crandall,M.G. and Rabinowitz,P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340,(1971).
    [5] Atkinson, K.E., The numerical solution of bifurcation problems,SIAM J. Numer. Anal., 14(4), pp.584-599,(1977).
    [6] Brezzi,F.,Rappaz,J. and Raviart, P.A.,Finite dimensional approxi-mation of a bifurcation problems, Numer. Math., 36, pp.1-25,(1980).
    [7] Keller, H. B. Lectures on Numerical Methods in Bifurcation Problems,TATA Institute of Fundamental Research , Springer-Verlag, (1987).
    [8] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited By Rabinowitz, P.H., Academic Press, pp.359-384,(1977).
    [9] Wacker,H.(ed),Xontinuation Methods, Academic Press, New York,(1978).
    [10] Rheinboldt,W.C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237, (1980)
    [11]Allgower, E.L. and Chien, C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7, pp.1265-1281, (1986).
    [12] Jepson,A.D. and Spence,A., Numerical Methods for Bifurcation Problems, State of the Art in Numeriacl Analysis, edit bu A. Iserles, MJD Powell,(1987).
    [13] Kubiček,M. and Marek,M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, (1983).
    [14] Rheinboldt,W.C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley(New York).
    [15] Aselone , P.M. and Moore, R.H., An Extension of the Newton-Kantorovich Method for Sloving Nonlinear Equations with An Application to Elasticity. J. Math. Anal. 13, pp476-501,(1966)
    [16] Bauer, L., Reiss, E.L., and Keller, H.B., Axisymmetric Bucking of Hollow Spheres and hemispheres, Comm. Pure Appl. Math., 23,
    pp. 529-568, (1970).
    [17] Kubicek, M. and Marek, M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York,(1983).
    [18] Keller, H. B., in “Recent Advances in Numerical Analysis”, Ed. by C. de Boor and G. H. Golub, Academic Press, New York, p.73, (1978).
    [19] Keller, H. B.,Lectures on NumericalMethods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, (1987)
    [20] Crandall, M.G., An Introduction to Constructive Aspectsof Bifurcation Theorem, edited by P.H. Rabinowitz, Academic Press, pp. 1-35, (1977).
    [21] Crandall, M.G. and Rabinowitz, P.H., Mathematical Theory of Bifurcation , Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D. NATO Advanced Study Institute Series, (1979).
    [22]林孟節, 多重分歧問題之分歧方向計算及解路徑探討,新竹教育大學 (2004).
    [23]趙家齊, 多參數非線性邊界值問題解路徑之探討,新竹教育大學 (2004).
    [24]梁寶丹, 非線性兩點邊界值常微分方程解路徑之分歧與延拓,新竹教育大學 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE