簡易檢索 / 詳目顯示

研究生: 蔡長恩
Zhang-En Tsai
論文名稱: 氧氣流量對柰米晶氮氧化鋯薄膜結構和性質的影響之研究
Effect of Oxygen Flow Rate on the Structure and Properties of Nanocrystalline Zr(N,O) Thin Film
指導教授: 黃嘉宏
Jia-Hong Huang
喻冀平
Ge-Ping Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 111
中文關鍵詞: 中空陰極放電離子鍍著系統氮氧化鋯薄膜氮化鋯二氧化鋯相分離
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文目的在研究中空陰極放電離子鍍著系統中,氧氣流量對於奈米晶氮氧化鋯薄膜的成分、結構、性質的影響。奈米晶氮氧化鋯薄膜鍍著在AISI 304不□鋼上。從X光光電子能譜分析中求得氮氧化鋯薄膜的鋯、氮、氧比,並且可得知氮化鋯、氧化鋯與氮氧化鋯三種不同的鍵結。X光繞射圖顯示出相分離發生在氧含量31.2到49.6 % 之間。在氮氧化鋯薄膜中,氮化鋯單一相存在於氧含量少於18.1%,然而當氧含量超過40.3%,會以單斜晶二氧化鋯相為主。低略角X光繞射也証實了相分離的發生。相分離一致地影響薄膜的硬度、殘留應力與腐蝕性質。當氮氧化鋯薄膜中,二氧化鋯低於40%時,相分離出來的二氧化鋯會降低薄膜的硬度。當二氧化鋯超過50%以上時,薄膜的硬度會接近兩相合成的硬度,其原因可能來自於二氧化鋯相分佈的變化。從量測殘留應力結果中,氮化鋯的殘留應力高於二氧化鋯的殘留應力並且含30到40% 二氧化鋯的薄膜會降低殘留應力,而且當二氧化鋯比例超過44%時,用光學方法所量測的殘留應力會很接近用XRD方法所量測二氧化鋯的殘留應力。薄膜的腐蝕性質由鹽水噴霧和硫酸與鹽水中動態極化掃描所得知。從動態極化掃描結果中,薄膜的腐蝕電流會隨著堆積密度增高而降低,膜厚對腐蝕電流不是為主要的因素,而且薄膜的導電性可能對腐蝕電流有所影響,在硫酸與鹽水中動態極化掃描的結果是一致的。


    This research studied the effect of oxygen flow rate on the composition, microstructure and properties of Zr(N,O) thin films deposited on AISI 304 stainless steel substrate using hollow cathode discharge ion-plating (HCD-IP) method. The Zr:N:O ratios of the Zr(N,O) films were determined from X-ray photoelectron spectroscopy (XPS) and the results showed that there were three kinds of bonding, including ZrN, Zr(N,O) and m-ZrO2. X-ray diffraction (XRD) patterns revealed that phase separation (ZrN and m-ZrO2) occurred at the oxygen content ranging from 31.2 to 49.6 at. %. ZrN single phase existed in the Zr(N,O) films with lower oxygen contents (<18.1 at. %), while m-ZrO2 phase was prevailed as the oxygen content increased over 40.3 at. %. Glancing incidence X-ray diffraction (GIXRD) confirmed the occurrence of phase separation. The phase separation consistently affected hardness, residual stress and corrosion resistance of the Zr(N,O) films. Phase separation of ZrO2 from ZrN lowers the hardness of the Zr(N,O) films as the fraction of ZrO2 lower than 40 %. When ZrO2 is higher than 50 %, the hardness of the films is close to that predicted by Vigard’s law. This is possibly derived from the change of distribution of the ZrO2 phase when ZrO2 becomes the major phase. The residual stresses in ZrN phase was higher than that in ZrO2, and the residual stress decreased for the specimen containing 30 to 40 % of ZrO2. For the samples containing more than 44% of ZrO2, the residual stresses measured by optical method were very close to those measured by XRD in ZrO2 phase. The corrosion resistance of the Zr(N,O) films was evaluated by salt spray test and potentiodynamic scan in two kinds of solutions: H2SO4 + 0.05M KSCN and 5% NaCl solutions. From the results of potentiodynamic scan, it was found that Icorr of the Zr(N,O) films decreased as the packing density increased and the film thickness was not a crucial factor on Icorr; moreover, the electrical conductivity of the film was an another significant factor on corrosion resistance. The results also showed consistent trend in the two solutions.

    Table of Contents List of Figures List of Tables Chapter 1 Introduction Chapter 2 Literature Review 2.1 HCD-IP Process 2.2 Effect of Processing Parameters on the Structure and Properties of TMeNxOy Films  2.2.1 Oxygen Flow rate  2.2.2 Substrate Bias  2.2.3 Heat Treatment  2.3 Characteristics of ZrN, ZrO2 and ZrNxOy Chapter 3 Experimental Details 3.1 Specimen Preparation and Coating Process 3.2 Characterization Methods  3.2.1 XPS  3.2.2 AES  3.2.3 XRD  3.2.4 RBS  3.3 Mechanical Properties  3.3.1 Hardness  3.3.2 Residual Stress 3.3.3 Roughness 3.4 Corrosion Resistance     3.4.1 Potentiodynamic Polarization    3.4.2 Salt spray test Chapter 4 Results   4.1 Composition 4.1.1 XPS   4.1.2 AES (Compositional Depth Profiles)  4.2 Structure  4.2.1 XRD     4.2.2 Lattice Parameter 4.2.3 Packing Density  4.3 Mechanical Properties 4.3.1 Hardness 4.3.2 Residual Stress 4.3.3 Roughness  4.4 Color  4.5 Corrosion Resistance     4.5.1 Potentiodynamic Polarization Scan   A. 0.5M H2SO4 + 0.05M KSCN      B. 5% NaCl     4.5.2 Salt Spray Test Chapter 5 Discussion 5.1Composition 5.2 Phase separation 5.3 Hardness 5.4 Residual stress  5.5 Corrosion Resistance Chapter 6 Conclusions Chapter 7 References Acknowledgements

    [1] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Thin Solid Films, 405 (2002) 162.
    [2] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol., 149 (2002) 7.
    [3] P. Panjan, B. Navinsek, A. Zabkar, Dj. Mandrino, J. Fiser, Thin Solid Films, 228 (1993) 233.
    [4] P.C. Johnson, H. Randhawa, Surf. Coat. Technol., 33 (1987) 53.
    [5] E. Kelesoglu, C. Mitterer, M.K. Kazmanli, M. Urgen, Surf. Coat. Technol., 116-119 (1999) 133.
    [6] F. Hohl, H.-R. Stock, P. Mayr, Surf. Coat. Technol., 54-55 (1992) 160.
    [7] W.R. LaFontaine, C.A. Paszkiet, M.A. Korhonen, C.-Y. Li, J. Mater. Res., 6 (10) (1991) 2084
    [8] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, Surf. Coat. Technol. 41, (1990) 191.
    [9] L. van Leaven, M.N. Alias, R. Brown, Surf. Coat. Technol., 53 (1992) 25.
    [10] M. Ohring, The Materials Science of Thin Films, Academic Press Inc, San Diego, 1992, p. 511.
    [11] R. Fraunchy, Surf. Sci. Rep., 38 (2000) 195.
    [12] F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, Surf. Coat. Technol., 174-175 (2003) 197.
    [13] T. Oyama, H. Ohsaki, Y. Tachibana, Y. Hayashi, Y. Ono, and N. Horie, Thin Solid Films 235, (1999) 351.
    [14] J. Eitle, P. Oelhafen, M. Lazarov, R. Sizmann, Proc. SPIE, 25 (1992) 1727
    [15] C. F. Wan, F. C. Sulzbach, J. D. Luttmer, J. Vac. Sci. Technol. B, 10 (1992) 1658
    [16] H. Tada, Y. Saito, M. Hirata, M. Hyodo, H. Kawahara, J. Appl. Phys., 73 (1993) 489.
    [17] A. Bittar, D. Cochrane, S. Caughley, J. Vac. Sci. Technol. A, 15 (1997) 223.
    [18] J. Guillot, F. Fabreguette, L. Imhoff, O. Heintz, M.C. Marco De Lucas, M. Sacilotti, B. Domenichini, S. Bourgeois, Appl. Surf. Sci., 177 (2001) 268.
    [19] F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, K. Pischow, J. de Rijk, Thin Solid Films, 447-448 (2004) 449.
    [20] Jean-Marie Chappe, Nicolas Martin, Guy Terwagne, Jan Lintymer, Joseph Gavoille, Jamal Takadoum, Thin Solid Films, 440 (2003) 66.
    [21] J.-H. Huang, C.-Y. Hsu, S.-S. Chen, G.-P. Yu, Mater. Chem. Phys., 77 (2002) 14.
    [22] C. H. Ho, ‘‘ Effect of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline ZrN Thin Film deposited by HCD Ion Plating ’’, Master Thesis, 2003. National Tsing Hua University, R. O. C..
    [23] W. Ensinger, A. Schroer, G. K. Wolf, Nucl. Instrum. Meth. Phys. Res. B, 80/81 (1993) 445.
    [24] R. A. Dugdale, J. Mater. Sci., 1 (1996) 160.
    [25] L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph. Goudeau, J. P. Riviere, Surf. Coat. Technol. (2005) in press
    [26] P. Carvalho, F. Vaz, L. Rebouta, S. Carvalho, L. Cunha, Ph. Goudeau, J. P. Riviere, E. Alves, A. Cavaleiro, Surf. Coat. Technol. (2005) in press
    [27] Min J. Jung, Kyung H. Nam, Yun M. Chung, Jin H. Boo, Jeon G. Han, Surf. Coat. Technol., 171 (2003) 71.
    [28] N. Martin, O. Banakh, A.M.E. Santo, S. Springer, R. Sanjines, J. Takadoum, F. Levy, Appl. Surf. Sci., 185 (2001) 123.
    [29] N. Martin, R. Sanjines, J. Takadoum, F. Levy, Surf. Coat. Technol., 142-144 (2001) 615.
    [30] E. Alves, A.R. Ramos, N. P. Barradas, F. Vaz, P. Cerqueira, L. Rebouta, U. Kreissig, Surf. Coat. Technol., 180-181 (2004) 372.
    [31] E. Ariza, L. A. Rocha, F. Vaz, L. Cunha, S.C. Ferreira, P. Carvalho, L. Rebouta, E. Alves, Ph. Goudeau, J. P. Riviere, Thin Solid Films, 469-470 (2004) 274.
    [32] Y. Makino, M. Nose, T. Tanaka, M. Misawa, A. Tanimoto, T. Nakai, K. Kato, K. Nogi, Surf. Coat. Technol., 98 (1998) 934.
    [33] F. Vaz, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A.R. Ramos, A. Cavaleiro, Ph. Goudeau, J. P. Riviere, Thin Solid Films, 469-470 (2004) 11.
    [34] D. S. Rickerby and P. J. Burnett., Thin Solid Films, 157 (1988) 195.
    [35] D. S. Rickerby and S. J. Bull, Surf. Coat. Technol., 39 - 40 (1989) 315.
    [36] M. Ohring, The Materials Science of Thin Films, Academic Press Inc, San Diego, 1992, p. 219.
    [37] J. A. Thornton, J. Vac. Sci. Technol., 11(4) (1974) 666.
    [38] J. E. Sundgren, B.O. Johansson, A. Rockett, S.A. Barnett, J. E. Greene, Physics and Chemistry of Protective Coatings, in: W. D. Sproul, J.E. Greene, J. A. Thornton (Eds.), American Institute of Physics, MA, 1986, p. 91.
    [39] Fu-Hsing Lu, Hong-Ying Chen, Thin Solid Films, 388-389 (2001) 368.
    [40] Zhao. Cheng, Hong-rui Peng, Guang-wen Xie, Yu-long Shi, Surf. Coat. Technol., 138 (2001) 237.
    [41] Magnus Oden, Jonathan Almer, Greger Hakansson, Surf. Coat. Technol. 120-121 (1999) 272.
    [42] J. Musil, J. Wolfe, Mater. Sci. Eng., A 163 (1993) 211.
    [43] E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153 (1987) 37.
    [44] J. A. Thorton, D. W. Hoffman, Thin Solid Films, 171 (1989) 81
    [45] A. H. Heuer, M. Ruhle, “Phase Transformation in ZrO2–Containing Ceramics: I, The Instability of c-ZrO2 and the Resulting Diffusion-Controlled Reactions”, 1984, The American Ceramic Society.
    [46] Peir-Yung Chu, Isabelle Campion, Relva C. Buchanan, J. Mater. Res., 7 (1992) 11.
    [47] Cheol Seong Hwang, Hyeong Joon Kim, J. Mater. Res., 8 (1993) 6.
    [48] M. G. Krishna, K. Narasimha, S. Mohan, Thin Solid Films, 193-194 (1990) 690.
    [49] W. W. Davison, R. C. Buchanan, Advances in Ceramics, edited by M. F. Yan, American Ceramic Society, Westerville, OH, 1989, Vol. 26, p. 513.
    [50] H. Myoren, Y. Nishiyama, H. Fukumoto, H. Sasu, Y. Osaka, Jpn. J. Appl. Phys., 28(3) (1989) 351.
    [51] S. S. Sim, P-Y. Chu, R. H. Krabill, D. E. Clark, Ultrastructure Processing of Advanced Ceramics, edited by J. D. Mackenzie John Wiley & Sons, New York, 1988, p. 995.
    [52] S. Venkataraj, O. Kappertz, C. Liesch, R. Detemple, R. Jayavel, M. Wutting, Vacuum, 75 (2004) 7.
    [53] Z. W. Zhao, B. K. Tay, G. Q. Yu, S. P. Lau, J. Phys., Condens. Mat., 15 (2003) 7707.
    [54] A. Hidaka, J. Nakamura, J. Sugimoto, Nucl, Eng. Des., 168 ( 1997) 361.
    [55] K. Maca, H. Hadraba, J. Cihlar, Nucl. Eng. Des., 168 (1997) 361.
    [56]A. Emeline, G.V. Kataeva, A. S. Litke, A. V. Rudakova,V. K. Ryabchuk, N. Serpone, Langmuir, 14 (1998) 5011.
    [57] F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mantyla, J. Eur. Ceram. Soc., 24 (2004) 2657.
    [58] X. J. Chen, K. A. Khor, S. H Chan, L. G. Yu, Mater. Sci. Eng. A, 335 (2002) 246.
    [59] C. Mitterer, J. Komenda-Stallmaier, P. Losbichler, P. Schmolz, W. S. M. Werner, H. Stori, Vacuum, 46 (1995) 1281.
    [60] S. Venkataraj, O. Kappertz, R. Jayavel, M. Wuttig, J. Appl. Phys., 92 (2002) 2461.
    [61] G. J. Leggett, J.C Vickerman, Int. J. Mass Spec. Ion Proc., 122 (1992) 281.
    [62] http://www.cem.msu.edu/~cem924sg/XPSASFs.html.
    [63] John F. Moulder, Handbook of X-ray Photoelectron Spectroscopy, edited by Jill Chastain, Jr. Roger C. King, Physical Electronics, 1995, p. 109.
    [64] P. Scherrer, Gött. Nachr 2, (1918) 98.
    [65] Leonid V. Azaroff, Martin J. Buerger, “The Powder Method in X-Ray Crystallography”, edited by McGraw-Hill, New York, 1958, p.233.
    [66] C.H. Ma, J.H. Huang, Haydn Chen, Thin Solid Films, 418 (2002) 73.
    [67] R.L. Celler, R. Nimmagadda, J. Electrochem. Soc., 132 (1985) 211.
    [68] http://www.matweb.com./search/SpecificMaterialPrint.asp? bassnum =CCERAF
    [69] W. C. Oliver, G. M. Pharr, J. Mater. Res., 7 (1992) 1564.
    [70] G. G. Stoney, Proc. R. Soc. Lond., A 82 (1909) 172.
    [71] Metals Handbook 8th ed., Vol. 1, ASM INTERNATIONAL, Metals Park, OH, 1961, p.422.
    [72] Metals Handbook 9th ed., Vol. 13, ASM INTERNATIONAL, Metals Park, OH, 1988, p.212.
    [73] ASTM standards, Section 3, 1996, B117, p.4, and G85, 0.350
    [74] I. Milosev, H.-H. Strehblow, M. Gaberscek, B. Navinsek, Surf. Interface Anal., 24 (1996) 448.
    [75] M. Del Re, R. Gouttebaron, J.-P. Dauchot, P. Leclere, G. Terwagne, M. Hecq, Surf. Coat. Technol., 174 (2003) 240.
    [76] Kevin, S. Robinson and M. Peter, A. Sherwood, Surf. Interface Anal., 6 (1984) 6.
    [77] John C. Vickerman, Surface Analysis – The Principal Techniques, Wiley, Chichester 1997, p. 58.
    [78] J.-H. Huang, H. -C. Yang, X. -J. Guo, G. -P. Yu, Surf. Coat. Technol. 195 (2005) 204.
    [79] I.A. Ovid’ko, Science 295, (2002) 2386.
    [80] J. Schiotz, Karsten W. Jacobsen, Science, 301 (2003) 1357.
    [81] Z. Shan., E. A. Stach, J. M. K. Wiezorek, J. A. Knapp, D. M. Follstaedt, S. X. Mao, Science, 305 (2004) 654.
    [82] B.F. Chen, W.L. Pan, G.P. Yu, J. Hwang, J.H. Huang, Surf. Coat. Technol.,111 (1999) 16.
    [83] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Corros. Sci., 43 (2001) 2023.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE