簡易檢索 / 詳目顯示

研究生: 姚怡如
Yao, Yi-Ju
論文名稱: 氧化鉿/氧化鋯超晶格介電質於矽鍺/矽超晶格通道環繞式邏輯電晶體與非揮發性記憶體之特性研究
Investigation of Hafnium Oxide/Zirconium Oxide Superlattice Dielectric on Silicon-Germanium/Silicon Superlattice Channel Gate-All-Around Logic Transistors and Non-Volatile Memory
指導教授: 吳永俊
Wu, Yung-Chun
口試委員: 侯福居
Hou, Fu-Ju
羅廣禮
Luo, Guang-Li
金雅琴
King, Ya-Chin
胡心卉
Hu, Hsin-Hui
學位類別: 博士
Doctor
系所名稱: 半導體研究學院 - 半導體研究學院
College of Semiconductor Research
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 190
中文關鍵詞: 超晶格矽鍺鰭式場效電晶體環繞式閘極場效電晶體氧化鉿鋯鐵電負電容變構相界奈米薄片記憶體多位元多層儲存單元
外文關鍵詞: Superlattice(SL), Silicon(Si), Silicon-Germanium(SiGe), Fin Field Effect Transistor(FinFET), Gate-All-Around Field Effect Transistor(GAAFET), Hafnium Zirconium Oxide(Hf1-xZrxO2, HZO), Ferroelectric(FE), Negative Capacitance(NC), Morphotropic Phase Boundary(MPB), Nanosheet(NS), Memory, Multibit, Multi-level Cell(MLC)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討氧化鉿/氧化鋯 (HfO₂/ZrO₂) 超晶格 (Superlattice, SL) 介電質在矽鍺/矽 (SiGe/Si) 超晶格通道環繞式閘極 (Gate-All-Around, GAA) 邏輯電晶體 (Transistor) 與非揮發性記憶體 (Non-Volatile Memory, NVM) 之特性。研究主軸著重於通道(Channel)與高介電常數(High Dielectric Constant, high-k) 材料的特性、優化與應用。
    首先,本研究探討矽鍺/矽超晶格結構作為電晶體通道,以提升邏輯與記憶體元件的效能。透過應變(Strain)工程、量子井效應(Quantum Well, QW)與高遷移率(Mobility)材料的結合,提升元件開關速度、閘極(Gate)控制能力與記憶體可靠度(Reliability)特性,同時確保與先進半導體製程的兼容性。
    其次,本研究系統性地分析超晶格氧化鉿/氧化鋯介電質的單層厚度、整體組成比例與退火溫度之相關性,並探討這些參數對電特性的影響,進一步將其應用於邏輯電晶體與多位元(Multibit)記憶體元件。
    本研究透過材料工程的優化,致力於開發高效能且可靠的半導體元件,並提供新穎的材料設計策略,以推動次世代電子元件的微縮與功能提升。透過通道與介電材料的協同最佳化,本研究將有助於延續摩爾定律的發展,為先進半導體技術的演進提供關鍵技術支撐。


    This study investigates the characteristics of hafnium oxide/zirconium oxide (HfO₂/ZrO₂) superlattice (SL) dielectric in silicon-germanium/silicon (SiGe/Si) superlattice channel gate-all-around (GAA) logic transistors and non-volatile memory (NVM). The research focuses on both channel and high dielectric constant (high-k) materials, exploring their properties, optimization, and applications.
    First, the study examines the use of SiGe/Si superlattice structures as transistor channels to enhance performance in both logic and memory applications. By integrating strain engineering, quantum well (QW) and high-mobility materials, this approach aims to improve switching speed, gate control, and memory reliability while maintaining compatibility with advanced semiconductor fabrication processes.
    Second, the research investigates the correlation between individual layer thickness, overall composition ratio, and annealing temperature of HfO₂/ZrO₂ superlattice dielectric. The impact of these parameters on electrical characteristics is systematically analyzed, followed by practical implementation in both logic transistor and multibit memory applications.
    Through these investigations, this study contributes to the development of high-performance and reliable semiconductor devices, offering new insights into material engineering strategies that extend the scaling and functionality of next-generation electronics. By optimizing both channel and dielectric materials, this research serves as a key enabler for the continued progression of semiconductor technology, aligning with the ongoing evolution of Moore’s Law.

    中文摘要 i Abstract iii Acknowledge v Contents vi List of Figures xii Chapter 1 Introduction 1 1.1 Moore's Law 1 1.1.1 Challenges of Device Scaling and Opportunities 3 1.2 Evolution of Memory Technologies 6 1.2.1 Von Neumann Architecture and Its Bottlenecks 9 1.3 High Mobility Channel Materials 11 1.4 Strain Engineering Techniques 14 1.4.1 Applications of Strained Silicon 14 1.4.2 Applications of Strained Silicon-Germanium 18 1.5 High Dielectric Constant Materials 21 1.5.1 Ferroelectric Hafnium Dioxide-Based Materials 22 1.5.2 Hafnium Zirconium Superlattice dieletric 26 1.6 Structure of the Thesis 30 Chapter 2 Theoretical Foundations 33 2.1 Operating Mechanisms of Devices 33 2.1.1 Metal-Oxide-Semiconductor Field-Effect Transistor 33 2.1.2 Complementary Metal-Oxide-Semiconductor Inverter 36 2.1.3 Non-volatile Memory 39 2.2 Key Parameters of Logic Transistors 43 2.2.1 Threshold Voltage 43 2.2.2 Subthreshold Swing 45 2.2.3 Negative Capacitance Effect 46 2.2.4 Drain-Induced Barrier Lowering 49 2.3 Key Parameters of Memory Devices 50 2.3.1 Relationship Between Memory Window and Channel 50 2.3.2 Charge Trapping and Interface Quality 53 2.3.3 Impact of Memory Read Operations 56 2.3.4 Effects of Temperature on Memory Endurance 59 2.4 High Mobility Channels 61 2.4.1 Mobility and Strain Engineering Techniques 61 2.4.2 Superlattice Silicon-Germanium/Silicon Epitaxial Structures 64 2.5 Crystallinity of Dielectric Materials 69 2.5.1 Morphotropic Phase Boundary 69 2.6 Overview of Material Analysis Techniques 73 2.6.1 Raman Spectroscopy 73 2.6.2 X-ray Reciprocal Space Mapping 75 2.6.3 Hall Effect Measurement 78 Chapter 3 Comparison of Logic Transistors with Different Channel Materials 80 3.1 Motivation 80 3.2 Device Fabrication 82 3.3 Results and Discussion 84 3.3.1 Comparison of Logic Transistors with Silicon, Silicon-Germanium and Silicon-Germanium/Silicon Superlattice Channel 84 3.3.1.1 Material Analysis 84 3.3.1.2 Electrical Analysis 88 3.3.2 Strained Silicon-Germanium/Silicon Superlattice FinFETs and Inverters 91 3.3.2.1 Electrical Analysis 91 3.3.2.2 TCAD Simulation 92 3.4 Summary 93 Chapter 4 Application of Ferroelectric Hafnium Zirconium Oxide on Silicon-Germanium/Silicon Channel Logic Transistors and Inverters 94 4.1 Motivation 94 4.2 Device Fabrication 96 4.3 Results and Discussion 97 4.3.1 Ferroelectric Hafnium Zirconium Oxide Applied on Silicon-Germanium/Silicon Stacked MIS Capacitors 97 4.3.1.1 Material Analysis 97 4.3.2 Ferroelectric Hafnium Zirconium Oxide Applied on Silicon-Germanium/Silicon Channel Ω-Gate Logic Transistors and Inverters 98 4.3.2.1 Material Analysis 98 4.3.2.2 Electrical Analysis 99 4.3.2.3 Technology Computer-Aided Design Simulation 102 4.4 Summary 104 Chapter 5 Application of Hafnium Zirconium Superlattice Oxide in Gate-All-Around Logic Transistors and Inverters with Silicon-Germanium/Silicon Superlattice Channel 105 5.1 Motivation 105 5.2 Device Fabrication 107 5.3 Results and Discussion 108 5.3.1 Hafnium Zirconium Superlattice Oxide MIM Capacitors 108 5.3.1.1 Material Analysis 108 5.3.1.2 Electrical Analysis 110 5.3.2 Hafnium Zirconium Superlattice Oxide MIS Capacitors 112 5.3.2.1 Material Analysis 112 5.3.2.2 Electrical Analysis 113 5.3.3 Hafnium Zirconium Superlattice Oxide in Gate-All-Around Logic Transistors and Inverters with Silicon-Germanium/Silicon Superlattice Channel 115 5.3.3.1 Material Analysis 115 5.3.3.2 Electrical Analysis 117 5.4 Summary 119 Chapter 6 Study of Composition-Dependent Hafnium Zirconium Superlattice Oxide in Silicon Gate-All-Around Field-Effect Logic Transistors 120 6.1 Motivation 120 6.2 Device Fabrication 121 6.3 Results and Discussion 123 6.3.1 Composition-Dependent Hafnium Zirconium Superlattice Oxide MIM Capacitors 123 6.3.1.1 Material Analysis 123 6.3.1.2 Electrical Analysis 125 6.3.2 Composition-Dependent Hafnium Zirconium Superlattice Oxide in Silicon Gate-All-Around Field-Effect Transistors 128 6.3.2.1 Material Analysis 128 6.3.2.2 Electrical Analysis 129 6.3.3 Interface Engineering of Composition-Dependent Hafnium Zirconium Superlattice Oxide Using Ammonia Plasma Treatment for Gate-All-Around Field-Effect Logic Transistors 130 6.3.3.1 Material Analysis 130 6.3.3.2 Electrical Analysis 130 6.4 Summary 132 Chapter 7 Comparison of Memory Devices with Different Channel Materials 133 7.1 Motivation 133 7.2 Device Fabrication 135 7.3 Results and Discussion 137 7.3.1 Material Analysis 137 7.3.2 Electrical Analysis 138 7.3.3 Reliability Analysis 141 7.4 Summary 144 Chapter 8 Study of N- and P- type Hafnium Zirconium Superlattice Ferroelectric Gate-All-Around Memory with Silicon-Germanium/Silicon Superlattice channel 145 8.1 Motivation 145 8.2 Device Fabrication 147 8.3 Results and Discussion 149 8.3.1 Material Analysis 149 8.3.2 Electrical Analysis 151 8.3.3 Reliability Analysis 155 8.4 Summary 158 Chapter 9 Conclusions and Recommendations for Future Work 159 9.1 Conclusions 159 9.2 Future Work 161 Reference 162 Curriculum Vitae 183 Publication List 184 Appendix 190

    [1] G. E. Moore, "Cramming more components onto integrated circuits," ed: McGraw-Hill New York, 1965.
    [2] "International Roadmap for Devices and Systems (IRDS™) 2022 Edition." https://irds.ieee.org/editions/2022/executive-summary (accessed 2023).
    [3] D. Hisamoto et al., "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Transactions on Electron Devices, vol. 47, no. 12, pp. 2320-2325, 2000, doi: 10.1109/16.887014.
    [4] K. J. Kuhn, A. Murthy, R. Kotlyar, and M. Kuhn, "(Invited) Past, Present and Future: SiGe and CMOS Transistor Scaling," ECS Transactions, vol. 33, no. 6, p. 3, 2010/10/01 2010, doi: 10.1149/1.3487530.
    [5] J. Welser, J. L. Hoyt, S. Takagi, and J. F. Gibbons, "Strain dependence of the performance enhancement in strained-Si n-MOSFETs," in Proceedings of 1994 IEEE International Electron Devices Meeting, 11-14 Dec. 1994 1994, pp. 373-376, doi: 10.1109/IEDM.1994.383389.
    [6] K. Rim et al., "Strained Si NMOSFETs for high performance CMOS technology," in 2001 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.01 CH37184), 12-14 June 2001 2001, pp. 59-60, doi: 10.1109/VLSIT.2001.934946.
    [7] A. Agrawal et al., "Gate-All-Around Strained Si0.4Ge0.6 Nanosheet PMOS on Strain Relaxed Buffer for High Performance Low Power Logic Application," presented at the 2020 IEEE International Electron Devices Meeting (IEDM), 2020.
    [8] Von Neumann, John. "First Draft of a Report on the EDVAC." IEEE Annals of the History of Computing 15.4 (1993): 27-75.
    [9] Chen, An. "A review of emerging non-volatile memory (NVM) technologies and applications." Solid-State Electronics 125 (2016): 25-38.
    [10] Hur, Rotem Ben, and Shahar Kvatinsky. "Memory processing unit for in-memory processing." 2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). IEEE, 2016.
    [11] Backus, John. "Can programming be liberated from the von Neumann style? A functional style and its algebra of programs." Communications of the ACM 21.8 (1978): 613-641.
    [12] Edwards, Jonathan, and Simon O'Keefe. "Eager recirculating memory to alleviate the von Neumann Bottleneck." 2016 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2016.
    [13] Zou, Xingqi, et al. "Breaking the von Neumann bottleneck: architecture-level processing-in-memory technology." Science China Information Sciences 64.6 (2021): 160404.
    [14] Bottleneck, Neumann. "mMPU—A Real Processing-in-Memory Architecture to Combat the von." Applications of Emerging Memory Technology: Beyond Storage 63 (2019): 191.
    [15] E. S. Cor Claeys, Ed. Germanium-Based Technologies From Materials to Devices, 1st ed. (Chapter 11. Advanced Germanium MOS Devices (C. On Chui, K.C. Saraswat).). (in English), p. 480.
    [16] K. Ismail, J. O. Chu, and B. S. Meyerson, "High hole mobility in SiGe alloys for device applications," Applied Physics Letters, vol. 64, no. 23, pp. 3124-3126, 1994, doi: 10.1063/1.111367.
    [17] Veeraraghavan, Surya, and Jerry G. Fossum. "Short-channel effects in SOI MOSFETs." IEEE Transactions on Electron Devices 36.3 (1989): 522-528.
    [18] M. V. Fischetti and S. E. Laux, "Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys," Journal of Applied Physics, vol. 80, no. 4, pp. 2234-2252, 1996, doi: 10.1063/1.363052.
    [19] L. . -Å. Ragnarsson et al., "Ultra low-EOT (5 Å) gate-first and gate-last high performance CMOS achieved by gate-electrode optimization," 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 2009, pp. 1-4, doi: 10.1109/IEDM.2009.5424254.
    [20] Böscke, T. S., et al. "Ferroelectricity in hafnium oxide thin films." Applied Physics Letters 99.10 (2011).
    [21] Choi, J. H., Y. Mao, and J. P. Chang. "Development of hafnium based high-k materials—A review." Materials Science and Engineering: R: Reports 72.6 (2011): 97-136.
    [22] S. Salahuddin and S. Datta, "Use of negative capacitance to provide voltage amplification for low power nanoscale devices," Nano letters, vol. 8, no. 2, pp. 405-410, 2008.
    [23] S. Salahuddin and S. Datta, "Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?," in 2008 IEEE International Electron Devices Meeting, 2008: IEEE, pp. 1-4.
    [24] Ni, Kai, et al. "Equivalent oxide thickness (EOT) scaling with hafnium zirconium oxide high-κ dielectric near morphotropic phase boundary." 2019 IEEE international electron devices meeting (IEDM). IEEE, 2019.
    [25] Weng, Zeping, et al. "Phase Transitions and Anti-Ferroelectric Behaviors in Hf 1-x Zr x O 2 Films." IEEE Electron Device Letters (2023).
    [26] Park, Min Hyuk, et al. "A comprehensive study on the structural evolution of HfO 2 thin films doped with various dopants." Journal of Materials Chemistry C 5.19 (2017): 4677-4690.
    [27] Muller, Johannes, et al. "Ferroelectricity in simple binary ZrO2 and HfO2." Nano letters 12.8 (2012): 4318-4323.
    [28] Park, Min Hyuk, and Cheol Seong Hwang. "Fluorite-structure antiferroelectrics." Reports on Progress in Physics 82.12 (2019): 124502.
    [29] Ferrari, S., and G. Scarel. "Oxygen diffusion in atomic layer deposited ZrO 2 and HfO 2 thin films on Si (100)." Journal of applied physics 96.1 (2004): 144-149.
    [30] Peng, Yue, et al. "HfO2–ZrO2 Superlattice Ferroelectric Field-Effect Transistor With Improved Endurance and Fatigue Recovery Performance." IEEE Transactions on Electron Devices 70.7 (2023): 3979-3982.
    [31] Cheema, S.S., Shanker, N., Wang, LC. et al. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022)
    [32] D. Das, B. Buyantogtokh, V. Gaddam and S. Jeon, "Sub 5 Å-EOT HfₓZr1–xO₂ for Next-Generation DRAM Capacitors Using Morphotropic Phase Boundary and High-Pressure (200 atm) Annealing With Rapid Cooling Process," in IEEE Transactions on Electron Devices, vol. 69, no. 1, pp. 103-108, Jan. 2022, doi: 10.1109/TED.2021.3131403.
    [33] Liao, C-Y., et al. "Superlattice HfO 2-ZrO 2 based Ferro-Stack HfZrO 2 FeFETs: Homogeneous-Domain Merits Ultra-Low Error, Low Programming Voltage 4 V and Robust Endurance 10 9 cycles for Multibit NVM." 2022 International Electron Devices Meeting (IEDM). IEEE, 2022.
    [34] Peng, Yue, et al. "HfO 2-ZrO 2 superlattice ferroelectric capacitor with improved endurance performance and higher fatigue recovery capability." IEEE Electron Device Letters 43.2 (2021): 216-219.
    [35] Liang, Yan-Kui, et al. "ZrO 2-HfO 2 Superlattice Ferroelectric Capacitors with Optimized Annealing to Achieve Extremely High Polarization Stability." IEEE Electron Device Letters 43.9 (2022): 1451-1454.
    [36] S. M. Sze and M.-K. Lee, Semiconductor Devices: Physics and Technology, 3rd ed. 2016.
    [37] Mikolajick, Thomas, et al. "Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors." Mrs Bulletin 43.5 (2018): 340-346.
    [38] Böscke, T. S., et al. "Ferroelectricity in hafnium oxide thin films." Applied Physics Letters 99.10 (2011).
    [39] Wang, Jianfeng, et al. "ALL-MASK: A Reconfigurable Logic Locking Method for Multicore Architecture with Sequential-Instruction-Oriented Key." arXiv preprint arXiv:2206.08087 (2022).
    [40] TCAD Sentaurus Device, Synopsys SDevice Ver.J-2014.09. Synopsys, Inc., Mountain View, CA, USA.
    [41] A. Es-Sakhi and M. H. Chowdhury, "Analytical model to estimate the subthreshold swing of SOI FinFET," in 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), 8-11 Dec. 2013 2013, pp. 52-55, doi: 10.1109/ICECS.2013.6815343.
    [42] H. Amrouch, G. Pahwa, A. D. Gaidhane, J. Henkel, and Y. S. Chauhan, "Negative Capacitance Transistor to Address the Fundamental Limitations in Technology Scaling: Processor Performance," IEEE Access, vol. 6, pp. 52754-52765, 2018, doi: 10.1109/access.2018.2870916.
    [43] M. A. Alam, "A Tutorial Introduction to Negative Capacitor Field Effect Transistors: Perspective on the Road Ahead," nanoHUB. org, 2015.
    [44] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles. McGraw-Hill, 2012.
    [45] Toprasertpong, Kasidit, Mitsuru Takenaka, and Shinichi Takagi. "Memory window in ferroelectric field-effect transistors: Analytical approach." IEEE Transactions on Electron Devices 69.12 (2022): 7113-7119.
    [46] Deng, Shan, et al. "Unraveling the dynamics of charge trapping and de-trapping in ferroelectric FETs." IEEE Transactions on Electron Devices 69.3 (2022): 1503-1511.
    [47] Ni, Kai, et al. "Critical role of interlayer in Hf 0.5 Zr 0.5 O 2 ferroelectric FET nonvolatile memory performance." IEEE Transactions on Electron Devices 65.6 (2018): 2461-2469.
    [48] Yurchuk, Ekaterina, et al. "Origin of the endurance degradation in the novel HfO 2-based 1T ferroelectric non-volatile memories." 2014 IEEE International Reliability Physics Symposium. IEEE, 2014.
    [49] Morita, Mizuho. "Native oxide films and chemical oxide films." Ultraclean Surface Processing of Silicon Wafers: Secrets of VLSI Manufacturing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. 543-558.
    [50] Mulaosmanovic, Halid, et al. "Impact of read operation on the performance of HfO 2-based ferroelectric FETs." IEEE Electron Device Letters 41.9 (2020): 1420-1423.
    [51] O. D. Trapp and D. S. Peck, Accelerated Testing Handbook, 5th ed., Technology Associates and D. S. Peck Consulting Corp., Eds., 1987.
    [52] De Salvo, Barbara, et al. "Experimental and theoretical investigation of nonvolatile memory data-retention." IEEE Transactions on Electron Devices 46.7 (1999): 1518-1524.
    [53] Y. Min et al., "Hybrid-orientation technology (HOT): opportunities and challenges," IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 965-978, 2006, doi: 10.1109/TED.2006.872693.
    [54] G. Wang, Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond Springer, 2019.
    [55] G. Hellings et al., "Si/SiGe superlattice I/O finFETs in a vertically-stacked Gate-All-Around horizontal Nanowire Technology," in 2018 IEEE Symposium on VLSI Technology, 18-22 June 2018 2018, pp. 85-86, doi: 10.1109/VLSIT.2018.8510654.
    [56] Y.-L. Li et al., "Improved Electrical Characteristics of Bulk FinFETs With SiGe Super-Lattice-Like Buried Channel," IEEE Electron Device Letters, vol. 40, no. 2, pp. 181-184, 2019, doi: 10.1109/led.2018.2890535.
    [57] S. Kim, S. H. Lee, M. J. Kim, W. S. Hwang, H. S. Jin and B. J. Cho, "Method to Achieve the Morphotropic Phase Boundary in HfxZr1−xO2 by Electric Field Cycling for DRAM Cell Capacitor Applications," in IEEE Electron Device Letters, vol. 42, no. 4, pp. 517-520, April 2021, doi: 10.1109/LED.2021.3059901.
    [58] Min Hyuk Park, Young Hwan Lee, Han Joon Kim, Yu Jin Kim, Taehwan Moon, Keum Do Kim, Seung Dam Hyun, and Cheol Seong Hwang, "Morphotropic Phase Boundary of Hf1–xZrxO2 Thin Films for Dynamic Random Access Memories," in ACS Applied Materials & Interfaces 2018 10 (49), 42666-42673
    [59] D. Das, B. Buyantogtokh, V. Gaddam and S. Jeon, "Influence of High-Pressure Annealing Conditions on Ferroelectric and Interfacial Properties of Zr-Rich HfₓZr₁₋ₓO₂Capacitors," in IEEE Transactions on Electron Devices, vol. 68, no. 4, pp. 1996-2002, April 2021, doi: 10.1109/TED.2021.3061963.
    [60] K. Zhong, H. Yin, Z. Zhang and F. Zhang, "Investigation of Electrical Characteristics on Morphotropic Phase Boundary of Hf1-xZrxO2 for Dynamic Random Access Memories," 2023 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 2023, pp. 1-3, doi: 10.1109/CSTIC58779.2023.10219210.
    [61] Il Young Lee, Jaejun Yu, "Origin of morphotropic phase boundary in thin-film Hf0.5Zr0.5O2 on the TiN electrode". J. Appl. Phys. 21 August 2023; 134 (7): 074102. https://doi.org/10.1063/5.0159496
    [62] Seungyeol Oh, Hojung Jang, Hyunsang Hwang, "Composition optimization of HfxZr1-xO2 thin films to achieve the morphotrophic phase boundary for high-k dielectrics. " J. Appl. Phys. 21 April 2023
    [63] Venkateswarlu Gaddam, Giuk Kim, Taeho Kim, Minhyun Jung, Chaeheon Kim, and Sanghun Jeon, "Novel Approach to High κ (∼59) and Low EOT (∼3.8 Å) near the Morphotrophic Phase Boundary with AFE/FE (ZrO2/HZO) Bilayer Heterostructures and High-Pressure Annealing, " in ACS Applied Materials & Interfaces 2022 14 (38), 43463-43473
    [64] Zhen Luo, Xinzhe Du, Hui Gan, Yue Lin, Wensheng Yan, Shengchun Shen, Yuewei Yin, Xiaoguang Li; 5.1 Å EOT and low leakage TiN/Al2O3/Hf0.5Zr0.5O2/Al2O3/TiN heterostructure for DRAM capacitor. Appl. Phys. Lett. 8 May 2023; 122 (19): 192903
    [65] S. A. Mala, L. Tsybeskov, D. J. Lockwood, X. Wu, and J. M. Baribeau, "Raman scattering in Si/SiGe nanostructures: Revealing chemical composition, strain, intermixing, and heat dissipation," Journal of Applied Physics, vol. 116, no. 1, 2014, doi: 10.1063/1.4886598.
    [66] M.-H. Cheng, Strain Studies of Silicon-Germanium Hetero-Epitaxial Layer by X-ray Reciprocal Space Mapping. 2007.
    [67] M. Wormington et al., "Asymmetric Relaxation of SiGe in Patterned Si Line Structures," AIP Conference Proceedings, vol. 931, no. 1, pp. 220-225, 2007, doi: 10.1063/1.2799374.
    [68] M.J. Kane, N. Apsley, D.A. Anderson, L.L. Taylor, and T. Kerr, "Hall Effect in Quantum Well Structures: Theory and Experiment" Journal of Physics C: Solid State Physics, Vol. 18, 5629 (1985), DOI: 10.1088/0022-3719/18/29/013)
    [69] Lee, C.H.; Mochizuki, S.; Southwick, R.G.; Li, J.; Miao, X.; Bao, R.; Ando, T.; Galatage, R.; Siddiqui, S.; Labelle, C.; et al. Jagannathan. A comparative study of strain and Ge content in Si1−xGex channel using planar FETs, FinFETs, and strained relaxed buffer layer FinFETs. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017 ; pp. 37.2.1–37.2.4. https://doi.org/10.1109/IEDM.2017.8268509.
    [70] Yeap, G.; Lin, S.S.; Chen, Y.M.; Shang, H.L.; Wang, P.W.; Lin, H.C.; Peng, Y.C.; Sheu, J.Y.; Wang, M.; Chen, X.; et al. 5 nm CMOS Production Technology Platform featuring full-fledged EUV, and High Mobility Channel FinFETs with densest 0.021 µm2 SRAM cells for Mobile SoC and High Performance Computing Applications. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 36.7.1–36.7.4. https://doi.org/10.1109/IEDM19573.2019.8993577.
    [71] van Dal, M.J.H.; Vellianitis, G.; Doornbos, G.; Duriez, B.; Holland, M.C.; Vasen, T.; Afzalian, A.; Su, S.K.; Chen, T.K.; Shen, T.M.; et al. Ge CMOS gate stack and contact development for Vertically Stacked Lateral Nanowire FETs. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 21.1.1–21.1.4. https://doi.org/10.1109/IEDM.2018.8614577.
    [72] Arimura, H.; Eneman, G.; Capogreco, E.; Witters, L.; De Keersgieter, A.; Favia, P.; Porret, C.; Hikavyy, A.; Loo, R.; Bender, H.; et al. Advantage of NW structure in preservation of SRB-induced strain and investigation of off-state leakage in strained stacked Ge NW pFET. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 21.2.1–21.2.4. https://doi.org/10.1109/IEDM.2018.8614712.
    [73] Huang, Y.-S.; Tsai, C.-E.; Tu, C.-T.; Chen, J.-Y.; Ye, H.-Y.; Lu, F.-L.; Liu, C.W. First Demonstration of Uniform 4-Stacked Ge0.9Sn0.1 Nanosheets with Record ION = 73 μA at VOV = VDS = −0.5 V and Low Noise Using Double Ge0.95Sn0.05 Caps, Dry Etch, Low Channel Doping, and High S/D Doping. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 2.4.1–2.4.4. https://doi.org/10.1109/IEDM13553.2020.9371929.
    [74] Tsai, C.-E.; Liu, Y.-C.; Tu, C.-T.; Huang, B.-W.; Jan, S.-R.; Chen, Y.-R.; Chen, J.-Y.; Chueh, S.-J.; Cheng, C.-Y.; Tsen, C.-J.; et al. Highly Stacked 8 Ge0.9Sn0.1 Nanosheet pFETs with Ultrathin Bodies (~3 nm) and Thick Bodies (~30 nm) Featuring the Respective Record ION/IOFF of 1.4x107 and Record ION of 92uA at Vov = VDS = −0.5 V by CVD Epitaxy and Dry Etching. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021; pp. 26.4.1–26.4.4. https://doi.org/10.1109/IEDM19574.2021.9720660.
    [75] Mochizuki, S.; Bhuiyan, M.; Zhou, H.; Zhang, J.; Stuckert, E.; Li, J.; Zhao; Wang; Basker, V.; Loubet, N.; Guo, D.; Haran, B.; Bu, H. Stacked Gate-All-Around Nanosheet pFET with Highly Compressive Strained Si1-xGex Channel. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 2.3.1–2.3.4. https://doi.org/10.1109/IEDM13553.2020.9372041.
    [76] Goo, J.S.; Xiang, Q.; Takamura, Y.; Wang, H.; Pan, J.; Arasnia, F.; Paton, E.N.; Besser, P.; Sidorov, M.V.; Adem, E.; et al. Scalability of strained-Si nMOSFETs down to 25 nm gate length. IEEE Electron Device Lett. 2003, 24, 351–353. https://doi.org/10.1109/LED.2003.812563.
    [77] Hashemi, P.; Ando, T.; Cartier, E.A.; Lee, K.L.; Bruley, J.; Lee, C.H.; Narayanan, V. High performance and reliable strained SiGe PMOS FinFETs enabled by advanced gate stack engineering. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 37.3.1–37.3.4. https://doi.org/10.1109/IEDM.2017.8268510.
    [78] Ok, I.; Akarvardar, K.; Lin, S.; Baykan, M.; Young, C.D.; Hung, P.Y.; Rodgers, M.P.; Bennett, S.; Stamper, H.O.; Franca, D.L.; et al. Strained SiGe and Si FinFETs for high performance logic with SiGe/Si stack on SOI. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 34.2.1–34.2.4. https://doi.org/10.1109/IEDM.2010.5703474.
    [79] Gomez, L.; Hashemi, P.; Hoyt, J.L. Enhanced Hole Transport in Short-Channel Strained-SiGe p-MOSFETs. IEEE Trans. Electron Devices 2009, 56, 2644–2651. https://doi.org/10.1109/TED.2009.2031043.
    [80] Paskiewicz, D.M.; Savage, D.E.; Holt, M.V.; Evans, P.G.; Lagally, M.G. Nanomembrane-based materials for Group IV semiconductor quantum electronics. Sci. Rep. 2014, 4, 4218. https://doi.org/10.1038/srep04218.
    [81] Kasper, E.; Schuh, A.; Bauer, G.; Holländer, B.; Kibbel, H. Test of Vegard's law in thin epitaxial SiGe layers. J. Cryst. Growth 1995, 157, 68–72. ISSN 0022-0248. https://doi.org/10.1016/0022-0248(95)00373-8.
    [82] H. -J. Lee, S. Callender, S. Rami, W. Shin, Q. Yu and J. M. Marulanda, "Intel 22nm Low-Power FinFET (22FFL) Process Technology for 5G and Beyond," 2020 IEEE Custom Integrated Circuits Conference (CICC), Boston, MA, USA, 2020, pp. 1-7, doi: 10.1109/CICC48029.2020.9075914.
    [83] Q. -V. Pham, F. Fang, V. -N. Ha, MD. -J. Piran, M. Le, L. -B. Le, W. -J. Hwang, Z. Ding, "A Survey of Multi-Access Edge Computing in 5G and Beyond: Fundamentals, Technology Integration, and State-of-the-Art," in IEEE Access, vol. 8, pp. 116974-117017, 2020, doi: 10.1109/ACCESS.2020.3001277.
    [84] C. Zhang, Y. -L. Ueng, C. Studer and A. Burg, "Artificial Intelligence for 5G and Beyond 5G: Implementations, Algorithms, and Optimizations," in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 10, no. 2, pp. 149-163, June 2020, doi: 10.1109/JETCAS.2020.3000103.
    [85] D. Kwon, S. Cheema, N. Shanker, K. Chatterjee, Y. -H. Liao, A. -J. Tan, C. Hu, S. Salahuddin, "Negative Capacitance FET with 1.8-nm-Thick Zr-Doped HfO2 Oxide," in IEEE Electron Device Letters, vol. 40, no. 6, pp. 993-996, June 2019, doi: 10.1109/LED.2019.2912413.
    [86] W. Xiao, C. Liu, S. Zheng, Q. Feng, C. Zhang, J. Zhang, Y. Hao, M. Liao, Y. Zhou, "Performance Improvement of Hf0.5Zr0.5O2-Based Ferroelectric-Field-Effect Transistors with ZrO2 Seed Layers," in IEEE Electron Device Letters, vol. 40, no. 5, pp. 714-717, May 2019, doi: 10.1109/LED.2019.2903641.
    [87] Z. Zhang, G. Xu, Q. Zhang, Z. Hou, J. Li, Z. Kong, Y. Zhang, Q. Xu, Z. Wu, H. Zhu, H. Yin, W. Wang, T. Ye, "FinFET With Improved Subthreshold Swing and Drain Current Using 3-nm Ferroelectric Hf0.5Zr0.5O2," in IEEE Electron Device Letters, vol. 40, no. 3, pp. 367-370, March 2019, doi: 10.1109/LED.2019.2891364.
    [88] M. H. Lee, P.-G. Chen, S.-T. Fan, C.-Y. Kuo, H.-H. Chen, S.-S. Gu, Y.-C. Chou, C.-H. Tang, R.-C. Hong, Z.-Y. Wang, M.-H. Liao, K.-S. Li, M.-C. Chen, and C. W. Liu, "Negative capacitance FETs with steep switching by ferroelectric Hf-based oxide," 2017 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, Taiwan, 2017, pp. 1-2, doi: 10.1109/VLSI-TSA.2017.7942466.
    [89] A. Khan, K. Chatterjee, B. Wang S. Drapcho, L. You, C. Serrao, S. -R, Bakaul, R. Ramesh, S. Salahuddin, "Negative capacitance in a ferroelectric capacitor," Nature Mater 14, 182–186 (2015). https://doi.org/10.1038/nmat4148
    [90] J. C. Wong and S. Salahuddin, "Negative Capacitance Transistors," in Proceedings of the IEEE, vol. 107, no. 1, pp. 49-62, Jan. 2019, doi: 10.1109/JPROC.2018.2884518.
    [91] J. -H. Bae, D. Kwon, N. Jeon, S. Cheema, A. -J. Tan, C. Hu, S. Salahuddin "Highly Scaled, High Endurance, Ω-Gate, Nanowire Ferroelectric FET Memory Transistors," in IEEE Electron Device Letters, vol. 41, no. 11, pp. 1637-1640, Nov. 2020, doi: 10.1109/LED.2020.3028339.
    [92] G. Choe and S. Yu, "Multigate Ferroelectric Transistor Design Toward 3-nm Technology Node," in IEEE Transactions on Electron Devices, vol. 68, no. 11, pp. 5908-5911, Nov. 2021, doi: 10.1109/TED.2021.3108477.
    [93] K. Jang, T. Saraya, M. Kobayashi, T. Hiramoto, "Ion/Ioff ratio enhancement and scalability of gate-all-around nanowire negative-capacitance FET with ferroelectric HfO2, " Solid-State Electronics, Volume 136, 2017, Pages 60-67, ISSN 0038-1101, https://doi.org/10.1016/j.sse.2017.06.011.
    [94] A. D. Gaidhane, G. Pahwa, A. Verma and Y. S. Chauhan, "Compact Modeling of Drain Current, Charges, and Capacitances in Long-Channel Gate-All-Around Negative Capacitance MFIS Transistor," in IEEE Transactions on Electron Devices, vol. 65, no. 5, pp. 2024-2032, May 2018, doi: 10.1109/TED.2018.2813059.
    [95] M. H. Lee, K.-T. Chen, C.-Y. Liao, S.-S. Gu, G.-Y. Siang, Y.-C. Chou, H.-Y. Chen, J. Le, R.-C. Hong, Z.-Y. Wang, S.-Y. Chen, P.-G. Chen, M. Tang, Y.-D. Lin, H.-Y. Lee, K.-S. Li, and C. W. Liu, "Extremely Steep Switch of Negative-Capacitance Nanosheet GAA-FETs and FinFETs," 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2018, pp. 31.8.1-31.8.4, doi: 10.1109/IEDM.2018.8614510.
    [96] Yi-Ju Yao, Ching-Ru Yang, Ting-Yu Tseng,Heng-Jia Chang et al. "High-Performance P-and N-Type SiGe/Si Strained Super-LatticeFinFET and CMOS Inverter: Comparison of Siand SiGe FinFET", Nanomaterials, 2023
    [97] Min Hyuk Park, Han Joon Kim, Yu Jin Kim, Woongkyu Lee, Taehwan Moon, Cheol Seong Hwang; Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl. Phys. Lett. 17 June 2013; 102 (24): 242905.
    [98] V. Gaddam, D. Das and S. Jeon, "Insertion of HfO2 Seed/Dielectric Layer to the Ferroelectric HZO Films for Heightened Remanent Polarization in MFM Capacitors," in IEEE Transactions on Electron Devices, vol. 67, no. 2, pp. 745-750, Feb. 2020, doi: 10.1109/TED.2019.2961208.
    [99] R. Materlik, C. Künneth, A. Kersch; The origin of ferroelectricity in Hf1−xZrxO2: A computational investigation and a surface energy model. Journal of Applied Physics 7 April 2015; 117 (13): 134109. https://doi.org/10.1063/1.4916707
    [100] N. Tasneem, M. Islam, Z. Wang, H. Chen, J. Hur, D. Triyoso, S. Consiglio, K. Tapily, R. Clark, G. Leusink, S. Yu, W. Chern, A. Khan "The Impacts of Ferroelectric and Interfacial Layer Thicknesses on Ferroelectric FET Design," in IEEE Electron Device Letters, vol. 42, no. 8, pp. 1156-1159, Aug. 2021, doi: 10.1109/LED.2021.3088388.
    [101] T. Mittmann, M. Materano, S. Chang, I. Karpov, T. Mikolajick and U. Schroeder, "Impact of Oxygen Vacancy Content in Ferroelectric HZO films on the Device Performance," 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, pp. 18.4.1-18.4.4, doi: 10.1109/IEDM13553.2020.9372097.
    [102] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur and H.-S. P. Wong, "Device scaling limits of Si MOSFETs and their application dependencies," in Proceedings of the IEEE, vol. 89, no. 3, pp. 259-288, March 2001, doi: 10.1109/5.915374.
    [103] K. Chen, H. C. Wann, P. K. Ko and C. Hu, "The impact of device scaling and power supply change on CMOS gate performance," in IEEE Electron Device Letters, vol. 17, no. 5, pp. 202-204, May 1996, doi: 10.1109/55.491829.
    [104] S. Hanson, M. Seok, D. Sylvester and D. Blaauw, "Nanometer Device Scaling in Subthreshold Logic and SRAM," in IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 175-185, Jan. 2008, doi: 10.1109/TED.2007.911033.
    [105] U. K. Das and T. K. Bhattacharyya, "Opportunities in Device Scaling for 3-nm Node and Beyond: FinFET Versus GAA-FET Versus UFET," in IEEE Transactions on Electron Devices, vol. 67, no. 6, pp. 2633-2638, June 2020, doi: 10.1109/TED.2020.2987139.
    [106] P. B. Vyas, C. Zhao, S. Dag, A. Pal, E. M. Bazizi and B. Ayyagari-Sangamalli, "Next Generation Gate-all-around Device Design for Continued Scaling Beyond 2 nm Logic," 2023 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Kobe, Japan, 2023, pp. 57-60, doi: 10.23919/SISPAD57422.2023.10319624.
    [107] H. Arimura, E. Capogreco, A. Vohra, C. Porret, R. Loo, E. Rosseel, A. Hikavyy, D. Cott, G. Boccardi, L. Witters, G. Eneman, J. Mitard, N. Collaert and N. Horiguchi, "Toward high-performance and reliable Ge channel devices for 2 nm node and beyond," 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, pp. 2.1.1-2.1.4, doi: 10.1109/IEDM13553.2020.9372007.
    [108] S. Oh, H. Jang and H. Hwang, "Accurate Evaluation of High-k HZO/ZrO2 Films by Morphotropic Phase Boundary," in IEEE Electron Device Letters, vol. 45, no. 1, pp. 28-31, Jan. 2024, doi: 10.1109/LED.2023.3331001.
    [109] A. Kashir, G. F. Mehrdad, and H. Hyunsang. "Towards an ideal high-κ HfO 2–ZrO 2-based dielectric." Nanoscale 13.32 (2021): 13631-13640.
    [110] Y. Peng, W. Xiao, Y. Liu, C. Jin, X. Deng, Y. Zhang, F. Liu, Y. Zheng, Y. Cheng, B. Chen, X. Yu, Y. Hao, and G. Han, "HfO2-ZrO2 Superlattice Ferroelectric Capacitor With Improved Endurance Performance and Higher Fatigue Recovery Capability," in IEEE Electron Device Letters, vol. 43, no. 2, pp. 216-219, Feb. 2022, doi: 10.1109/LED.2021.3135961.
    [111] Y. K. Liang, W. L. Li, Y. J. Wang, L. C. Peng, C. C. Lu, H. Y. Huang, S.H. Yeong, Y. M. Lin, Y. H. Chu, E. Y. Hang and C. H. Lin"ZrO2-HfO2 Superlattice Ferroelectric Capacitors With Optimized Annealing to Achieve Extremely High Polarization Stability," in IEEE Electron Device Letters, vol. 43, no. 9, pp. 1451-1454, Sept. 2022, doi: 10.1109/LED.2022.3193383.
    [112] Y. J. Yao, T. Y. Tseng, C. R. Yang, T. J. Lin, H. J. Chang, G. L. Luo, F. J. Hou, K. S. Chang-Liao and Y. C. Wu, "SiGe/Si Superlattice Ferroelectric HfZrO2 ΩFET and CMOS Inverter With SSmin,n = 62.4 mV/dec, ION/IOFF > 1.0 × 107, and Voltage Gain = 111.4 V/V," in IEEE Electron Device Letters, vol. 45, no. 2, pp. 260-263, Feb. 2024, doi: 10.1109/LED.2023.3331741.
    [113] Guirong Su, Sha YangShuang Li, Christopher J. Butch, Sergey N. Filimonov, Ji-Chang Ren and Wei Liu. "Switchable Schottky contacts: simultaneously enhanced output current and reduced leakage current." Journal of the American Chemical Society 141.4 (2019): 1628-1635.
    [114] Kisung Chae, Sarah F. Lombardo, Nujhat Tasneem, Mengkun Tian, Harish Kumarasubramanian, Jae Hur, Winston Chern, Shimeng Yu, Claudia Richter, Patrick D. Lomenzo, Michael Hoffmann, Uwe Schroeder, Dina Triyoso, Steven Consiglio, Kanda Tapily, Robert Clark, Gert Leusink, Nazanin Bassiri-Gharb, Prab Bandaru, Jayakanth Ravichandran, Andrew Kummel, Kyeongjae Cho, Josh Kacher, Asif Islam Khan. "Local epitaxial templating effects in ferroelectric and antiferroelectric ZrO2." ACS Applied Materials & Interfaces 14.32 (2022): 36771-36780.
    [115] Chen, Yu-Rui and Tu, Chien-Te and Zhao, Zefu and Liu, Yi-Chun and Huang, Bo-Wei and Xing, Yifan and Chen, Guan-Hua and Liu, C. W. "Stacked Two Ge 0.98 Si 0.02 Nanowire nFETs with High-k Dielectrics Featuring High ION per Footprint of 4800uA/um at VOV=VDS= 0.5V." 2023 International VLSI Symposium on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT). IEEE, 2023.
    [116] Wang, Shengkai, and Xiaolei Wang. MOS Interface Physics, Process and Characterization. CRC Press, 2021.
    [117] Ando, T. Ultimate Scaling of High-κ Gate Dielectrics: Higher-κ or Interfacial Layer Scavenging? Materials 2012, 5, (3), 478-500. DOI: 10.3390/ma5030478
    [118] Si, M.; Lin, Z.; Chen, Z.; Sun, X.; Wang, H.; Ye, P. D. Scaled indium oxide transistors fabricated using atomic layer deposition. Nat. Electron. 2022, 5, (3), 164-170. DOI: 10.1038/s41928-022-00718-w
    [119] Chakraborty, W.; Jose, M. S.; Gomez, J.; Saha, A.; Aabrar, K. A.; Fay, P.; Gupta, S.; Datta, S. In Higher-k Zirconium Doped Hafnium Oxide (HZO) Trigate Transistors with Higher DC and RF Performance and Improved Reliability, In Proceedings of the 2021 Symposium on VLSI Technology, 13-19 June 2021; pp 1-2.
    [120] Wong, H.; Iwai, H. On the scaling of subnanometer EOT gate dielectrics for ultimate nano CMOS technology. Microelectron. Eng. 2015, 138, 57-76. DOI: https://doi.org/10.1016/j.mee.2015.02.023
    [121] Ali, T.; Polakowski, P.; Riedel, S.; Büttner, T.; Kämpfe, T.; Rudolph, M.; Pätzold, B.; Seidel, K.; Löhr, D.; Hoffmann, R.; Czernohorsky, M.; Kühnel, K.; Thrun, X.; Hanisch, N.; Steinke, P.; Calvo, J.; Müller, J. Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics. Appl. Phys. Lett. 2018, 112, (22). DOI: 10.1063/1.5029324
    [122] Ferrari, S.; Scarel, G. Oxygen diffusion in atomic layer deposited ZrO2 and HfO2 thin films on Si (100). J. Appl. Phys. 2004, 96, (1), 144-149. DOI: 10.1063/1.1753080
    [123] Gong, Z.; Chen, J.; Peng, Y.; Liu, Y.; Yu, X.; Han, G. Physical origin of the endurance improvement for HfO2-ZrO2 superlattice ferroelectric film. Appl. Phys. Lett. 2022, 121, (24). DOI: 10.1063/5.0127136
    [124] Park, M. H.; Kim, H. J.; Lee, G.; Park, J.; Lee, Y. H.; Kim, Y. J.; Moon, T.; Kim, K. D.; Hyun, S. D.; Park, H. W.; Chang, H. J.; Choi, J.-H.; Hwang, C. S. A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices. Appl. Phys. Rev. 2019, 6, (4). DOI: 10.1063/1.5118737
    [125] Saha, A. K.; Grisafe, B.; Datta, S.; Gupta, S. K. In Microscopic Crystal Phase Inspired Modeling of Zr Concentration Effects in Hf1-xZrxO2 Thin Films, In Proceedings of the 2019 Symposium on VLSI Technology, 9-14 June 2019; pp T226-T227. DOI: 10.23919/VLSIT.2019.8776533
    [126] Lehninger, D.; Prabhu, A.; Sünbül, A.; Ali, T.; Schöne, F.; Kämpfe, T.; Biedermann, K.; Roy, L.; Seidel, K.; Lederer, M.; Eng, L. M. Ferroelectric [HfO2/ZrO2] Superlattices with Enhanced Polarization, Tailored Coercive Field, and Improved High Temperature Reliability. Adv. Phys. Res. 2023, 2, (9), 2200108. DOI: https://doi.org/10.1002/apxr.202200108
    [127] Compagnoni, C. M., Goda, A., Spinelli, A. S., Feeley, P., Lacaita, A. L., & Visconti, A. (2017). Reviewing the evolution of the NAND flash technology. Proceedings of the IEEE, 105(9), 1609-1633.
    [128] Compagnoni, C. M., & Spinelli, A. S. (2019). Reliability of NAND flash arrays: A review of what the 2-D–to–3-D transition meant. IEEE Transactions on Electron Devices, 66(11), 4504-4516.
    [129] Somayya Madakam, R. Ramaswamy, Siddharth Tripathi (2015) Internet of Things (IoT): A Literature Review. Journal of Computer and Communications, 03,164-173. doi: 10.4236/jcc.2015.35021
    [130] J. von Neumann, "First draft of a report on the EDVAC," in IEEE Annals of the History of Computing, vol. 15, no. 4, pp. 27-75, 1993, doi: 10.1109/85.238389.
    [131] J. Wu, F. Mo, T. Saraya, T. Hiramoto and M. Kobayashi, "A Monolithic 3-D Integration of RRAM Array and Oxide Semiconductor FET for In-Memory Computing in 3-D Neural Network," in IEEE Transactions on Electron Devices, vol. 67, no. 12, pp. 5322-5328, Dec. 2020, doi: 10.1109/TED.2020.3033831.
    [132] R. Khaddam-Aljameh, P. -A. Francese, L. Benini and E. Eleftheriou, "An SRAM-Based Multibit In-Memory Matrix-Vector Multiplier With a Precision That Scales Linearly in Area, Time, and Power," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 2, pp. 372-385, Feb. 2021, doi: 10.1109/TVLSI.2020.3037871.
    [133] Liao, C.-Y. and Hsiang, K.-Y. and Hsieh, F.-C. and Chiang, S.-H. and Chang, S.-H. and Liu, J.-H. and Lou, C.-F. and Lin, C.-Y. and Chen, T.-C. and Chang, C.-S. and Lee, M. H., "Multibit Ferroelectric FET Based on Nonidentical Double HfZrO2 for High-Density Nonvolatile Memory," in IEEE Electron Device Letters, vol. 42, no. 4, pp. 617-620, April 2021, doi: 10.1109/LED.2021.3060589.
    [134] De, Sourav and Müller, Franz and Le, Hoang-Hiep and Lederer, Maximilian and Raffel, Yannick and Ali, Tarek and Lu, Darsen and Kämpfe, Thomas, "READ-Optimized 28nm HKMG Multibit FeFET Synapses for Inference-Engine Applications," in IEEE Journal of the Electron Devices Society, vol. 10, pp. 637-641, 2022, doi:
    [135] 10.1109/JEDS.2022.3195119.
    [136] S. Beyer, S. Dünkel, M. Trentzsch, J. Müller, A. Hellmich, D. Utess, J. Paul, D. Kleimaier, J. Pellerin, S. Müller, J. Ocker, A. Benoist, H. Zhou, M. Mennenga, M. Schuster, F. Tassan, M. Noack, A. Pourkeramati, F. Müller, M. Lederer, T. Ali, R. Hoffmann, T. Kämpfe, K. Seidel, H Mulaosmanovic, E. T. Breyer, T. Mikolajick, S. Slesazeck, "FeFET: A versatile CMOS compatible device with game-changing potential," 2020 IEEE International Memory Workshop (IMW), Dresden, Germany, 2020, pp. 1-4, doi: 10.1109/IMW48823.2020.9108150.
    [137] E. Yurchuk, J. Müller, J. Paul, T. Schlösser, D. Martin, R. Hoffmann, S. Müeller, S. Slesazeck, U. Schröeder, R. Boschke, R. v. Bentum, and T. Mikolajick, "Impact of Scaling on the Performance of HfO2-Based Ferroelectric Field Effect Transistors," in IEEE Transactions on Electron Devices, vol. 61, no. 11, pp. 3699-3706, Nov. 2014, doi: 10.1109/TED.2014.2354833.
    [138] T. Ali, P. Polakowski, K. Kühnel, M. Czernohorsky, T. Kämpfe, M. Rudolph, B. Pätzold, D. Lehninger, F. Müller, "A Multilevel FeFET Memory Device based on Laminated HSO and HZO Ferroelectric Layers for High-Density Storage," 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 28.7.1-28.7.4, doi: 10.1109/IEDM19573.2019.8993642.
    [139] Dünkel, S. and Trentzsch, M. and Richter, R. and Moll, P. and Fuchs, C. and Gehring, O. and Majer, M. and Wittek, S. and Müller, B. and Melde, T. and Mulaosmanovic, H. and Slesazeck, S. and Müller, S. and Ocker, J. and Noack, M. and Löhr, D.-A. and Polakowski, P. and Müller, J. and Mikolajick, T. and Höntschel, J. and Rice, B. and Pellerin, J. and Beyer, S., "A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond," 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp. 19.7.1-19.7.4, doi: 10.1109/IEDM.2017.8268425.
    [140] C. -Y. Liao et al., "Liao, C.-Y. and Lou, Z.-F. and Lin, C.-Y. and Senapati, A. and Karmakar, R. and Hsiang, K.-Y. and Li, Z.-X. and Ray, W.-C. and Lee, J.-Y. and Chen, P.-H. and Chang, F.-S. and Tseng, H.-H. and Wang, C.-C. and Tsai, J.-H. and Tang, Y.-T. and Chang, S. T. and Liu, C. W. and Maikap, S. and Lee, M. H." 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2022, pp. 36.6.1-36.6.4, doi: 10.1109/IEDM45625.2022.10019369.
    [141] Alam, Md Nur K. and Higashi, Yusuke and Truijen, B. and Kaczer, B. and Popovici, Mihaela Ioana and O’Sullivan, Bj and Roussel, Ph. and Degraeve, Robin and Heyns, M. and Van Houdt, J., "Insight to Data Retention loss in ferroelectric Hf0.5Zr0.5O2 pFET and nFET from simultaneous PV and IV measurements," 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 2022, pp. 340-342, doi: 10.1109/VLSITechnologyandCir46769.2022.9830476.
    [142] S. -J. Yoon, D. -H. Min, S. -E. Moon, K. S. Park, J. I. Won and S. -M. Yoon, "Improvement in Long-Term and High-Temperature Retention Stability of Ferroelectric Field-Effect Memory Transistors With Metal–Ferroelectric–Metal–Insulator–Semiconductor Gate-Stacks Using Al-Doped HfO2 Thin Films," in IEEE Transactions on Electron Devices, vol. 67, no. 2, pp. 499-504, Feb. 2020, doi: 10.1109/TED.2019.2961117.
    [143] T. Krishnamohan, D. Kim, S. Raghunathan and K. Saraswat, "Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With record high drive currents and ≪60mV/dec subthreshold slope," 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2008, pp. 1-3, doi: 10.1109/IEDM.2008.4796839.
    [144] N. Gong, and T.-P. Ma, “A study of endurance issues in HfO2-based ferroelectric field effect transistors: Charge trapping and trap generation,” in IEEE Electron Device Lett., vol. 39, no. 1, pp. 15-18, Jan. 2018, doi: 10.1109/LED.2017.2776263.
    [145] Yujia Liu, Kevin-P. Gradwohl, Chen-Hsun Lu, Thilo Remmele, Yuji Yamamoto, Marvin H. Zoellner, Thomas Schroeder, Torsten Boeck, Houari Amari, Carsten Richter, Martin Albrecht, “Role of critical thickness in SiGe/Si/SiGe heterostructure design for qubits,” J. Appl. Phys. 28 August 2022; 132 (8): 085302. doi: 10.1063/5.0101753.
    [146] Resnati, D., Nicosia, G., Paolucci, G. M., Visconti, A., & Compagnoni, C. M. (2016). Cycling-induced charge trapping/de-trapping in Flash memories—Part I: Experimental evidence. IEEE Transactions on Electron Devices, 63(12), 4753-4760.
    [147] H. Mulaosmanovic, J. Ocker, S. Müller, U. Schroeder, J. Müller, P. Polakowski, S. Flachowsky, R. van Bentum, T. Mikolajick, and S. Slesazeck, “Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors,” ACS Appl. Mater. Interfaces, vol. 9, no. 4, pp. 3792-3798, 2017, doi: 10.1021/acsami.6b13866
    [148] Compagnoni, C. M., Ghetti, A., Ghidotti, M., Spinelli, A. S., & Visconti, A. (2009). Data retention and program/erase sensitivity to the array background pattern in deca-nanometer NAND Flash memories. IEEE transactions on electron devices, 57(1), 321-327.
    [149] De Salvo, B., Ghibaudo, G., Pananakakis, G., Reimbold, G., Mondond, F., Guillaumot, B., & Candelier, P., “Experimental and theoretical investigation of nonvolatile memory data-retention.” IEEE Transactions on Electron Devices 46.7 (1999): 1518-1524.
    [150] Lee, C.H. and Southwick, R.G. and Mochizuki, S. and Li, J. and Miao, X. and Wang, M. and Bao, R. and Ok, I. and Ando, T. and Hashemi, P. and Guo, D. and Narayanan, V. and Loubet, N. and Jagannathan, H., "Toward High Performance SiGe Channel CMOS: Design of High Electron Mobility in SiGe nFinFETs Outperforming Si," 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2018, pp. 35.1.1-35.1.4, doi: 10.1109/IEDM.2018.8614581.
    [151] Bae, Jong-Ho and Kwon, Daewoong and Jeon, Namho and Cheema, Suraj and Tan, Ava Jiang and Hu, Chenming and Salahuddin, Sayeef, "Highly Scaled, High Endurance, Ω-Gate, Nanowire Ferroelectric FET Memory Transistors," in IEEE Electron Device Letters, vol. 41, no. 11, pp. 1637-1640, Nov. 2020, doi: 10.1109/LED.2020.3028339.
    [152] M. -C. Nguyen, S. Kim, K. Lee, J. -Y. Yim, R. Choi and D. Kwon, "Wakeup-Free and Endurance-Robust Ferroelectric Field-Effect Transistor Memory Using High Pressure Annealing," in IEEE Electron Device Letters, vol. 42, no. 9, pp. 1295-1298, Sept. 2021, doi: 10.1109/LED.2021.3096248.
    [153] Zeng, Binjian and Liao, Min and Peng, Qiangxiang and Xiao, Wenwu and Liao, Jiajia and Zheng, Shuaizhi and Zhou, Yichun, "2-Bit/Cell Operation of Hf0.5Zr0.5O2 Based FeFET Memory Devices for NAND Applications," in IEEE Journal of the Electron Devices Society, vol. 7, pp. 551-556, 2019, doi: 10.1109/JEDS.2019.2913426.
    [154] A. Gholami, Z. Yao, S. Kim, C. Hooper, M. W. Mahoney and K. Keutzer, "AI and Memory Wall," in IEEE Micro, doi: 10.1109/MM.2024.3373763.
    [155] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu and H. Zhang, "Deep Learning with Long Short-Term Memory for Time Series Prediction," in IEEE Communications Magazine, vol. 57, no. 6, pp. 114-119, June 2019, doi: 10.1109/MCOM.2019.1800155.
    [156] Jun, Hongshin and Cho, Jinhee and Lee, Kangseol and Son, Ho-Young and Kim, Kwiwook and Jin, Hanho and Kim, Keith "Hbm (high bandwidth memory) dram technology and architecture." 2017 IEEE International Memory Workshop (IMW). IEEE, 2017.
    [157] Macri, Joe. "AMD's next generation GPU and high bandwidth memory architecture: FURY." 2015 IEEE hot chips 27 symposium. IEEE, 2015.
    [158] Lee, Dong Uk and Kim, Kyung Whan and Kim, Kwan Weon and Kim, Hongjung and Kim, Ju Young and Park, Young Jun and Kim, Jae Hwan and Kim, Dae Suk and Park, Heat Bit and Shin, Jin Wook and Cho, Jang Hwan and Kwon, Ki Hun and Kim, Min Jeong and Lee, Jaejin and Park, Kun Woo and Chung, Byongtae and Hong, Sungjoo "25.2 A 1.2 V 8Gb 8-channel 128GB/s high-bandwidth memory (HBM) stacked DRAM with effective microbump I/O test methods using 29nm process and TSV." 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). IEEE, 2014.
    [159] S. Salahuddin, A. Tan, S. Cheema, N. Shanker, M. Hoffmann and J. -H. Bae, "FeFETs for Near-Memory and In-Memory Compute," 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2021, pp. 19.4.1-19.4.4, doi: 10.1109/IEDM19574.2021.9720622.
    [160] Lee, Hyun Jae and Nam, Seunggeol and Lee, Yunseong and Kim, Kihong and Choe, Duk-Hyun and Yoo, Sijung and Park, Yoonsang and Jo, Sanghyun and Kim, Donghoon and Heo, Jinseong, "Laminated Ferroelectric FET With Large Memory Window and High Reliability," in IEEE Transactions on Electron Devices, vol. 71, no. 4, pp. 2411-2416, April 2024, doi: 10.1109/TED.2024.3371945.
    [161] Qiang Chen, Yuke Zhang, Wenyan Liu, Jie Jiang, Qiong Yang, Limei Jiang, "Ferroelectric switching behavior of nanoscale Hf0.5Zr0.5O2 grains, " in International Journal of Mechanical Sciences, vol. 212, 2021, doi.org/10.1016/j.ijmecsci.2021.106828.
    [162] Müller, Franz and De, Sourav and Olivo, Ricardo and Lederer, Maximilian and Altawil, Abdelrahman and Hoffmann, Raik and Kämpfe, Thomas and Ali, Tarek and Dünkel, Stefan and Mulaosmanovic, Halid and Müller, Johannes and Beyer, Sven and Seidel, Konrad and Gerlach, Gerald, "Multilevel Operation of Ferroelectric FET Memory Arrays Considering Current Percolation Paths Impacting Switching Behavior," in IEEE Electron Device Letters, vol. 44, no. 5, pp. 757-760, May 2023, doi: 10.1109/LED.2023.3256583.
    [163] Meihar, Paritosh and Srinu, Rowtu and Saraswat, Vivek and Lashkare, Sandip and Mulaosmanovic, Halid and Singh, Ajay Kumar and Dünkel, Stefan and Beyer, Sven and Ganguly, Udayan, "FeFET-Based MirrorBit Cell for High-Density NVM Storage," in IEEE Transactions on Electron Devices, vol. 71, no. 4, pp. 2380-2385, April 2024, doi: 10.1109/TED.2024.3361843.
    [164] Yao, Yi-Ju and Lin, Tsai-Jung and Wei, Chen-You and Chen, Bo-Xu and Fang, Yung-Teng and Chang, Heng-Jia and Fu, Yu-Min and Luo, Guang-Li and Hou, Fu-Ju and Wu, Yung-Chun, "High-Temperature Retention Stability of Multibit Ferroelectric HfZrO₂ FinFET With SiGe/Si Superlattice Channel for Enhanced Speed and Memory Window," in IEEE Transactions on Electron Devices, vol. 71, no. 10, pp. 5975-5979, Oct. 2024, doi: 10.1109/TED.2024.3434772.
    [165] J. M. Larson and J. P. Snyder, "Overview and status of metal S/D Schottky-barrier MOSFET technology," in IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1048-1058, May 2006, doi: 10.1109/TED.2006.871842.
    [166] H. -K. Peng, J. -Z. Chen and Y. -H. Wu, "Improved Memory Window and Robust Endurance for Ge P-Channel Ferroelectric FET Memory Using Microwave Annealing Followed by Rapid Thermal Annealing," in IEEE Electron Device Letters, vol. 43, no. 12, pp. 2073-2076, Dec. 2022, doi: 10.1109/LED.2022.3213263.
    [167] Whall, T. E. "p-channel SiGe heterostructures for field effect applications." Applied surface science 102 (1996): 221-229.
    [168] Whall, T. E., and E. H. C. Parker. "Silicon-germanium heterostructures—advanced materials and devices for silicon technology." Journal of Materials Science: Materials in Electronics 6 (1995): 249-264.
    [169] Daembkes, H., Herzog, H. J., Jorke, H., Kibbel, H., & Kasper, E. "The n-channel SiGe/Si modulation-doped field-effect transistor." IEEE Transactions on Electron Devices 33.5 (1986): 633-638.
    [170] Karunasiri, R. P. G., and K. L. Wang. "Quantum devices using SiGe/Si heterostructures." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 9.4 (1991): 2064-2071.
    [171] Kuo, Yu-Hsuan, et al. "Quantum-confined Stark effect in Ge/SiGe quantum wells on Si for optical modulators." IEEE Journal of selected topics in quantum electronics 12.6 (2006): 1503-1513.
    [172] Peng, H. K., Kao, T. H., Kao, Y. C., Wu, P. J., & Wu, Y. H. "Reduced asymmetric memory window between Si-based n-and p-FeFETs with scaled ferroelectric HfZrOₓ and AlON interfacial layer." IEEE Electron Device Letters 42.6 (2021): 835-838.
    [173] Mulaosmanovic, H., et al. "Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells." 2015 IEEE International Electron Devices Meeting (IEDM). IEEE, 2015.
    [174] Mulaosmanovic, Halid, et al. "Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors." ACS applied materials & interfaces 9.4 (2017): 3792-3798.
    [175] Duan, Jiahui, et al. "Trap Generation in Whole Gate Stacks of FeFET With TiN/Hf 0.5 Zr 0.5 O 2/SiO x/Si (MFIS) Gate Structure During Endurance Fatigue." IEEE Transactions on Electron Devices 69.12 (2022): 6547-6551.
    [176] De, Sourav, et al. "Demonstration of multiply-accumulate operation with 28 nm fefet crossbar array." IEEE Electron Device Letters 43.12 (2022): 2081-2084.
    [177] Y. Peng, G. Han, Z. Chen, Q. Li, J. Zhang and Y. Hao, "Analytical Calculation of Influence of Ferroelectric Properties on Electrical Characteristics Negative Capacitance Germanium FETs," in IEEE Journal of the Electron Devices Society, vol. 6, pp. 233-239, 2018, doi: 10.1109/JEDS.2018.2794069.
    [178] Kuk, S. H., Han, S. M., Kim, B. H., Baek, S. H., Han, J. H., & Kim, S. H. "Comprehensive understanding of the HZO-based n/pFeFET operation and device performance enhancement strategy." 2021 IEEE International Electron Devices Meeting (IEDM). IEEE, 2021.
    [179] Kleimaier, D., Mulaosmanovic, H., Dünkel, S., Beyer, S., Soss, S., Slesazeck, S., & Mikolajick, T. "Demonstration of a p-type ferroelectric FET with immediate read-after-write capability." IEEE Electron Device Letters 42.12 (2021): 1774-1777.

    QR CODE