簡易檢索 / 詳目顯示

研究生: 游靜芳
Jing-Fang Yu
論文名稱: 建立自殺基因系統並結合介白素三號之基因療法對攝護腺癌的治療
Establishment of suicide gene system combined with interleukin-3 gene therapy for prostate cancer therapy
指導教授: 江啟勳
Chi-Shiun Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 82
中文關鍵詞: 基因療法介白素三號
外文關鍵詞: Gene therapy, HSV1-TK, GCV, interleukin-3, CTL assay
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基因療法是目前癌症治療方法中最具有潛力及前瞻性的一種新興療法。於本研究中,以TRAMP-C1攝護腺癌細胞作為研究的模式,結合自殺基因療法HSV1-tk及免疫療法IL-3此兩種療法探討治療惡性腫瘤的成效。首先,利用liposome轉殖DNA的方式建立TRAMP-C1/TK及TRAMP-C1/IL3-TK兩種腫瘤細胞株。在體外實驗結果發現,轉染後的細胞對於GCV藥物具有高度的敏感性,於低濃度時便有明顯的毒殺效果。而體內實驗中,將腫瘤細胞植入至C57BL/6J小鼠身上,施予不同的治療。結果顯示結合自殺基因HSV1-tk與細胞激素IL-3的治療後,可明顯地延緩腫瘤的生長速率,而只接受自殺基因HSV1-tk治療的組別,雖然也有延遲腫瘤生長的情形,但卻不及結合兩種治療所達到的效果。在免疫機能方面,雖然沒有如預期般的增加T細胞的毒殺能力,但在接受HSV1-tk及IL-3治療後的小鼠,其T細胞釋放IFN-γ的能力的確有大幅的提升。因此,我們建立了一個結合自殺基因治療HSV1-tk及免疫療法IL-3的系統,藉由GCV治療的毒殺效果與細胞激素IL-3刺激所提升的免疫力,兩者互相加成的作用,可以回復低落的免疫機能,增強抗腫瘤的能力,而達到延遲腫瘤生長的效果。


    It is critical to develop new therapies to improve anti-tumor activity and decrease the toxicity to normal host cells. Gene therapy is a novel therapeutic approach with high potential to cure immune-resistant tumor cells. In this study, we used prostate cancer cell line, TRAMP-C1, as a research model and combined gene therapy using suicide gene system HSV1-tk/GCV and immunotherapy using murine interleukin-3 (mIL-3) to evaluate the anti-tumor effect. First, we constructed two transfected cell lines, TRAMP-C1/TK and TRAMP-C1/IL3-TK, by liposomal DNA delivery system. These transfected cell lines have high sensitivity to the cytotoxic effect of ganciclovir (GCV). The transfected tumor cells were subscutaneously inoculated into the right flank of C57BL/6J mice to establish a tumor model. The results show that the combination of HSV1-tk/GCV and mIL-3 treatment significantly delays the tumor growth rate. The treatment with HSV1-tk/GCV alone causes transient tumor growth delay in comparison to combined therapy. In immune functional assay, we didn’t observe expected enhancement of cytotoxic T lymphocyte response. However, the ability of CD4 T cells secreting IFN-γ is improved in combined treatment with HSV1-tk/GCV and mIL-3. These results indicate that this combined system can recover down-regulated immunity and enhance anti-tumor activity. In summary, we have already established a combined gene therapy system, which relies on the cytotoxicity of GCV treatment and immune responses stimulated by mIL-3. This system can active CD4 T cells to secret IFN-γand delay the tumor growth rate.

    英文摘要 ………………………………………………………………Ⅰ 中文摘要 ………………………………………………………………Ⅲ 誌謝 ……………………………………………………………………Ⅳ 目錄 ……………………………………………………………………Ⅴ 第一章 序論 ……………………………………………………………1 1.1 攝護腺癌 .......................................................................................1 1.1.1 攝護腺癌簡介 ……………………………………………1 1.1.2 攝護腺癌的診斷 …………………………………………1 1.1.3 傳統治療方法 ……………………....................................2 1.2 基因治療 …………………….......................................................4 1.3 第一型單純疱疹病毒胸腺嘧啶激脢/丙氧鳥苷系統 ..................6 1.3.1 HSV1-tk/GCV的歷史 .....................................................6 1.3.2 HSV1-tk/GCV的作用機轉 .............................................7 1.3.3 旁觀者效應 ......................................................................7 1.3.4 HSV1-tk/GCV的應用 .....................................................8 1.4 介白素3號 .................................................................................8 1.4.1 介白素3號在免疫系統中的功能與角色 ......................8 1.4.2 介白素3號對腫瘤的療效 ..............................................9 1.4.3 介白素3號的副作用 ....................................................10 1.5 研究目的與內容 .......................................................................11 第二章 材料與方法 ..............................................................................12 2.1質體的構築 .................................................................................12 2.1.1 聚合酶素連鎖反應 ........................................................12 2.1.2 限制酶酵素切割反應 ....................................................13 2.1.3 限制酶酵素切割反應 ....................................................14 2.1.4 DNA片段的純化 ...........................................................14 2.1.5 DNA的接合作用 ...........................................................15 2.1.6 細菌熱休克轉殖法 ........................................................15 2.1.7 微量純化製備質體 ........................................................16 2.1.8 洋菜膠電泳 ....................................................................16 2.1.9 中量純化製備質體 ........................................................17 2.2 細胞培養 ...................................................................................18 2.2.1 配製DMEM細胞培養液 ..............................................18 2.2.2 細胞培養液的配方 ........................................................18 2.2.3 細胞繼代 ........................................................................19 2.3 質體在轉染細胞中的表現 .......................................................19 2.3.1 細胞的轉染 ....................................................................19 2.3.2 RNA的製備 ...................................................................20 2.3.3 RT-PCR ............................................................................21 2.3.4 酵素連結免疫吸附法(ELISA) .......................................23 2.3.6 細胞對於GCV的敏感性試驗 ......................................24 2.3.7 細胞存活試驗(MTT assay) ............................................24 2.4 動物實驗 ...................................................................................25 2.4.1 動物來源 ........................................................................25 2.4.2 動物分組 ........................................................................25 2.4.3 植入TRAMP-C1、TRAMP-C1/IL3-TK、TRAMP-C1/TK 腫瘤細胞株 ....................................................................26 2.4.4 血清樣本 ........................................................................26 2.4.5 酵素連結免疫吸附法 ....................................................27 2.4.6 RNA的製備 ...................................................................27 2.4.7 RT-PCR ............................................................................27 2.4.8 注射GCV ........................................................................27 2.4.9 腫瘤生長曲線 ................................................................28 2.5 免疫機能測試 ...........................................................................28 2.5.1 純化脾臟T細胞 ............................................................28 2.5.2 酵素連結免疫吸附法 ....................................................29 2.5.3 細胞毒殺測試 ................................................................29 第三章 實驗結果 ..................................................................................31 3.1質體的構築 .................................................................................31 3.1.1 IRES-IL3-TK質體的構築 .............................................31 3.1.2 IRES-TK質體的構築 ....................................................32 3.2 構築好的質體DNA在轉染細胞中的表現 .............................33 3.2.1 將構築好的質體DNA送入細胞中 ..............................33 3.2.2 轉染細胞中基因mRNA的表現情形 ............................34 3.2.3 轉染細胞中蛋白質的表現情形 ....................................34 3.2.4 轉染細胞對於GCV藥物的敏感性實驗 ......................35 3.3 轉染細胞在動物體內的反應 ...................................................36 3.3.1 腫瘤細胞中mRNA的表現情形 ....................................36 3.3.2 血清中細胞激素IL-3的分析 ........................................37 3.3.3 腫瘤生長曲線 ................................................................38 3.4 T細胞免疫反應測試 ..............................................................39 3.4.1 純化T細胞 .....................................................................39 3.4.2 檢視T細胞表現IFN-γ與IL-4的情形 ........................39 3.4.3 檢測T細胞毒殺能力 .....................................................40 第四章 討論 ..........................................................................................42 圖表說明 ................................................................................................50 圖表 ........................................................................................................56 附錄一 ....................................................................................................73 附錄二 ....................................................................................................74 附錄三 ....................................................................................................75 參考文獻 ................................................................................................77

    1. 行政院衛生署 2005年死因統計結果摘要. 2005.
    2. King, GD, Curtin, JF, Candolfi, M, Kroeger, K, Lowenstein, PR, and Castro, MG Gene therapy and targeted toxins for glioma. Curr Gene Ther, 2005; 5(6): 535-557.
    3. Yazawa, K, Fisher, WE, and Brunicardi, FC Current progress in suicide gene therapy for cancer. World J Surg, 2002; 26(7): 783-789.
    4. Saleh, M, Stacker, SA, and Wilks, AF Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res, 1996; 56(2): 393-401.
    5. Rodolfo, M and Colombo, MP Interleukin-12 as an adjuvant for cancer immunotherapy. Methods, 1999; 19(1): 114-120.
    6. Colombo, MP and Trinchieri, G Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev, 2002; 13(2): 155-168.
    7. Greenberg, PD Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells. Adv Immunol, 1991; 49:281-355.
    8. Boehm, U, Klamp, T, Groot, M, and Howard, JC Cellular responses to interferon-gamma. Annu Rev Immunol, 1997; 15(749-795.
    9. Pastan, I, Chaudhary, V, and FitzGerald, DJ Recombinant toxins as novel therapeutic agents. Annu Rev Biochem, 1992; 61(331-354.
    10. Phillips, PC, Levow, C, Catterall, M, Colvin, OM, Pastan, I, and Brem, H Transforming growth factor-alpha-Pseudomonas exotoxin fusion protein (TGF-alpha-PE38) treatment of subcutaneous and intracranial human glioma and medulloblastoma xenografts in athymic mice. Cancer Res, 1994; 54(4): 1008-1015.
    11. Asai, A, Miyagi, Y, Sugiyama, A, et al. Negative effects of wild-type p53 and s-Myc on cellular growth and tumorigenicity of glioma cells. Implication of the tumor suppressor genes for gene therapy. J Neurooncol, 1994; 19(3): 259-268.
    12. Badie, B, Drazan, KE, Kramar, MH, Shaked, A, and Black, KL Adenovirus-mediated p53 gene delivery inhibits 9L glioma growth in rats. Neurol Res, 1995; 17(3): 209-216.
    13. Fueyo, J, Gomez-Manzano, C, Alemany, R, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene, 2000; 19(1): 2-12.
    14. Riley, DJ, Nikitin, AY, and Lee, WH Adenovirus-mediated retinoblastoma gene therapy suppresses spontaneous pituitary melanotroph tumors in Rb+/- mice. Nat Med, 1996; 2(12): 1316-1321.
    15. Moolten, FL Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res, 1986; 46(10): 5276-5281.
    16. Elion, GB, Furman, PA, Fyfe, JA, de Miranda, P, Beauchamp, L, and Schaeffer, HJ Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci U S A, 1977; 74(12): 5716-5720.
    17. Culver, KW, Ram, Z, Wallbridge, S, Ishii, H, Oldfield, EH, and Blaese, RM In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science, 1992; 256(5063): 1550-1552.
    18. Ram, Z, Culver, KW, Walbridge, S, Blaese, RM, and Oldfield, EH In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats. Cancer Res, 1993; 53(1): 83-88.
    19. Yoshida, K, Kawami, H, Yamaguchi, Y, et al. Retrovirally transmitted gene therapy for gastric carcinoma using herpes simplex virus thymidine kinase gene. Cancer, 1995; 75(6 Suppl): 1467-1471.
    20. Yang, L, Hwang, R, Pandit, L, Gordon, EM, Anderson, WF, and Parekh, D Gene therapy of metastatic pancreas cancer with intraperitoneal injections of concentrated retroviral herpes simplex thymidine kinase vector supernatant and ganciclovir. Ann Surg, 1996; 224(3): 405-414; discussion 414-407.
    21. Lechanteur, C, Delvenne, P, Princen, F, et al. Combined suicide and cytokine gene therapy for peritoneal carcinomatosis. Gut, 2000; 47(3): 343-348.
    22. Ilsley, DD, Lee, SH, Miller, WH, and Kuchta, RD Acyclic guanosine analogs inhibit DNA polymerases alpha, delta, and epsilon with very different potencies and have unique mechanisms of action. Biochemistry, 1995; 34(8): 2504-2510.
    23. Momparler, RL Pharmacology of 5-Aza-2'-deoxycytidine (decitabine). Semin Hematol, 2005; 42(3 Suppl 2): S9-16.
    24. Moolten, FL and Wells, JM Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst, 1990; 82(4): 297-300.
    25. Freeman, SM, Abboud, CN, Whartenby, KA, et al. The "bystander effect": tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res, 1993; 53(21): 5274-5283.
    26. Moolten, FL Drug sensitivity ("suicide") genes for selective cancer chemotherapy. Cancer Gene Ther, 1994; 1(4): 279-287.
    27. Tjuvajev, JG, Finn, R, Watanabe, K, et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res, 1996; 56(18): 4087-4095.
    28. Gambhir, SS, Barrio, JR, Herschman, HR, and Phelps, ME Assays for noninvasive imaging of reporter gene expression. Nucl Med Biol, 1999; 26(5): 481-490.
    29. Talbot, JN, Gutman, F, Fartoux, L, et al. PET/CT in patients with hepatocellular carcinoma using [(18)F]fluorocholine: preliminary comparison with [(18)F]FDG PET/CT. Eur J Nucl Med Mol Imaging, 2006.
    30. van Dijk, TB, Baltus, B, Caldenhoven, E, et al. Cloning and characterization of the human interleukin-3 (IL-3)/IL-5/ granulocyte-macrophage colony-stimulating factor receptor betac gene: regulation by Ets family members. Blood, 1998; 92(10): 3636-3646.
    31. Nicola, NA Receptors for colony-stimulating factors. Br J Haematol, 1991; 77(2): 133-138.
    32. Hara, T and Miyajima, A Function and signal transduction mediated by the interleukin 3 receptor system in hematopoiesis. Stem Cells, 1996; 14(6): 605-618.
    33. Metcalf, D, Begley, CG, Johnson, GR, Nicola, NA, Lopez, AF, and Williamson, DJ Effects of purified bacterially synthesized murine multi-CSF (IL-3) on hematopoiesis in normal adult mice. Blood, 1986; 68(1): 46-57.
    34. Le Beau, MM, Epstein, ND, O'Brien, SJ, et al. The interleukin 3 gene is located on human chromosome 5 and is deleted in myeloid leukemias with a deletion of 5q. Proc Natl Acad Sci U S A, 1987; 84(16): 5913-5917.
    35. Metcalf, D The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature, 1989; 339(6219): 27-30.
    36. Metcalf, D Hematopoietic regulators: redundancy or subtlety? Blood, 1993; 82(12): 3515-3523.
    37. Ogawa, M Hematopoiesis. J Allergy Clin Immunol, 1994; 94(3 Pt 2): 645-650.
    38. Aglietta, M, Sanavio, F, Stacchini, A, et al. Interleukin-3 in vivo: kinetic of response of target cells. Blood, 1993; 82(7): 2054-2061.
    39. Frendl, G and Beller, DI Regulation of macrophage activation by IL-3. I. IL-3 functions as a macrophage-activating factor with unique properties, inducing Ia and lymphocyte function-associated antigen-1 but not cytotoxicity. J Immunol, 1990; 144(9): 3392-3399.
    40. Dan, Y, Katakura, Y, Ametani, A, Kaminogawa, S, and Asano, Y IL-3 augments TCR-mediated responses of type 2 CD4 T cells. J Immunol, 1996; 156(1): 27-34.
    41. McBride, WH, Dougherty, GD, Wallis, AE, Economou, JS, and Chiang, CS Interleukin-3 in gene therapy of cancer. Folia Biol (Praha), 1994; 40(1-2): 62-73.
    42. Chiang, CS, Hong, JH, Wu, YC, McBride, WH, and Dougherty, GJ Combining radiation therapy with interleukin-3 gene immunotherapy. Cancer Gene Ther, 2000; 7(8): 1172-1178.
    43. Mangi, MH and Newland, AC Interleukin-3 in hematology and oncology: current state of knowledge and future directions. Cytokines Cell Mol Ther, 1999; 5(2): 87-95.
    44. Kitamura, K [Clinical application of new cytokines]. Rinsho Byori, 1993; 41(4): 390-398.
    45. Wong, PM, Chung, SW, Dunbar, CE, Bodine, DM, Ruscetti, S, and Nienhuis, AW Retrovirus-mediated transfer and expression of the interleukin-3 gene in mouse hematopoietic cells result in a myeloproliferative disorder. Mol Cell Biol, 1989; 9(2): 798-808.
    46. Ganser, A, Lindemann, A, Seipelt, G, et al. Clinical effects of recombinant human interleukin-3. Am J Clin Oncol, 1991; 14 Suppl 1(S51-63.
    47. Ganser, A, Ottmann, OG, and Hoelzer, D Interleukin 3 and interleukin 3/GM-CSF combination therapy--clinical implications. Stem Cells, 1993; 11(6): 465-473.
    48. Yamazaki, M, Straus, FH, Messina, M, et al. Adenovirus-mediated tumor-specific combined gene therapy using Herpes simplex virus thymidine/ganciclovir system and murine interleukin-12 induces effective antitumor activity against medullary thyroid carcinoma. Cancer Gene Ther, 2004; 11(1): 8-15.
    49. Ren, W, Strube, R, Zhang, X, Chen, SY, and Huang, XF Potent tumor-specific immunity induced by an in vivo heat shock protein-suicide gene-based tumor vaccine. Cancer Res, 2004; 64(18): 6645-6651.
    50. Ali, S, King, GD, Curtin, JF, et al. Combined immunostimulation and conditional cytotoxic gene therapy provide long-term survival in a large glioma model. Cancer Res, 2005; 65(16): 7194-7204.
    51. Chen, SH, Kosai, K, Xu, B, et al. Combination suicide and cytokine gene therapy for hepatic metastases of colon carcinoma: sustained antitumor immunity prolongs animal survival. Cancer Res, 1996; 56(16): 3758-3762.
    52. Majumdar, AS, Zolotorev, A, Samuel, S, et al. Efficacy of herpes simplex virus thymidine kinase in combination with cytokine gene therapy in an experimental metastatic breast cancer model. Cancer Gene Ther, 2000; 7(7): 1086-1099.
    53. Hall, SJ, Mutchnik, SE, Chen, SH, Woo, SL, and Thompson, TC Adenovirus-mediated herpes simplex virus thymidine kinase gene and ganciclovir therapy leads to systemic activity against spontaneous and induced metastasis in an orthotopic mouse model of prostate cancer. Int J Cancer, 1997; 70(2): 183-187.
    54. Vile, RG, Castleden, S, Marshall, J, Camplejohn, R, Upton, C, and Chong, H Generation of an anti-tumour immune response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoural cytokine expression. Int J Cancer, 1997; 71(2): 267-274.
    55. Caruso, M, Panis, Y, Gagandeep, S, Houssin, D, Salzmann, JL, and Klatzmann, D Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc Natl Acad Sci U S A, 1993; 90(15): 7024-7028.
    56. Engelmann, C, Panis, Y, Bolard, J, et al. Liposomal encapsulation of ganciclovir enhances the efficacy of herpes simplex virus type 1 thymidine kinase suicide gene therapy against hepatic tumors in rats. Hum Gene Ther, 1999; 10(9): 1545-1551.
    57. Morin, KW, Duan, W, Xu, L, et al. Cytotoxicity and cellular uptake of pyrimidine nucleosides for imaging herpes simplex type-1 thymidine kinase (HSV-1 TK) expression in mammalian cells. Nucl Med Biol, 2004; 31(5): 623-630.
    58. Noy, R, Ben-Zvi, Z, Manor, E, et al. Antitumor activity and metabolic activation of N-methanocarbathymidine, a novel thymidine analogue with a pseudosugar rigidly fixed in the northern conformation, in murine colon cancer cells expressing herpes simplex thymidine kinase. Mol Cancer Ther, 2002; 1(8): 585-593.
    59. Wang, RF The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity. Trends Immunol, 2001; 22(5): 269-276.
    60. Xie, QW, Whisnant, R, and Nathan, C Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med, 1993; 177(6): 1779-1784.
    61. Levitsky, HI, Lazenby, A, Hayashi, RJ, and Pardoll, DM In vivo priming of two distinct antitumor effector populations: the role of MHC class I expression. J Exp Med, 1994; 179(4): 1215-1224.
    62. Sgadari, C, Farber, JM, Angiolillo, AL, et al. Mig, the monokine induced by interferon-gamma, promotes tumor necrosis in vivo. Blood, 1997; 89(8): 2635-2643.
    63. Arenberg, DA, Kunkel, SL, Polverini, PJ, et al. Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med, 1996; 184(3): 981-992.
    64. Kim, JH, Kim, SH, Brown, SL, and Freytag, SO Selective enhancement by an antiviral agent of the radiation-induced cell killing of human glioma cells transduced with HSV-tk gene. Cancer Res, 1994; 54(23): 6053-6056.
    65. Kim, JH, Kim, SH, Kolozsvary, A, Brown, SL, Kim, OB, and Freytag, SO Selective enhancement of radiation response of herpes simplex virus thymidine kinase transduced 9L gliosarcoma cells in vitro and in vivo by antiviral agents. Int J Radiat Oncol Biol Phys, 1995; 33(4): 861-868.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE