研究生: |
周莉芳 Chou, Li-Fang |
---|---|
論文名稱: |
創傷弧菌YJ016中調控環狀雙鳥嘌呤單磷酸相關的 vva0325-36基因群功能分析 Characterization of the vva0325-36 Gene Cluster Associated with Cyclic-di-GMP Regulation in Vibrio vulnificus YJ016 |
指導教授: |
張晃猷
Chang, Hwan-You |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 87 |
中文關鍵詞: | 創傷弧菌 、多重覆片段毒素 、環狀雙鳥嘌呤單磷酸 |
外文關鍵詞: | Vibrio vulnificus, RTX, Cyclic di-GMP |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用生物資訊學分析推測,創傷弧菌YJ016第二號染色體上編號vva0325到vva0336的基因群,很可能參與調控分子環狀雙鳥嘌呤單磷酸的代謝。此基因群可轉譯一多重覆片段毒素,一套第一型的分泌系統,以及一包含感應激酶、反應調控蛋白、兩個分別具有GGDEF和EAL功能區域蛋白質的調控系統。已知含有GGDEF功能區域的VVA0326蛋白質及含有EAL功能區域的VVA0328蛋白質,分別具有雙鳥苷酸環化酶及磷酸雙酯鍵分解酶的活性,且調控創傷弧菌體內的環狀雙鳥嘌呤單磷酸之濃度。本研究第一部份首先探討vva0331基因所轉譯一個分子量489 kDa的巨大蛋白質在細菌內的表現位置及生物功能。結果顯示VVA0331蛋白質主要以分泌型式存在,而其產量會受到鐵離子的調控。另外,觀察細菌黏附能力、細胞毒殺分析及老鼠毒力實驗發現創傷弧菌菌株YJ016及VVA0331突變株並無差異。第二部份的研究是分析vva0326~9所轉譯與調控環狀環狀雙鳥嘌呤單磷酸相關的基因產物特性。我們發現剔除vva0326基因的GGDEF區域,會使創傷弧菌的泳動力增加,而減少生物膜的形成及對HEp-2細胞株有較高的毒性能力。然而,剔除vva0328基因的EAL區域之突變菌株,與創傷弧菌菌株YJ016並無明顯差異。另外,分析rtxA、vvhA、vva0331轉錄量及RtxA蛋白質的表現程度顯示這些毒力因子可能受此環狀雙鳥嘌呤單磷酸系統的調控。最後也發現此兩種蛋白質在創傷弧菌菌株YJ016中會有極化分佈的表現。綜合本研究的結果,此環狀雙鳥嘌呤單磷酸系統的調控機制會影響此細菌毒力,相信研究此調控機制將有助於瞭解創傷弧菌的生理與致病機制。
Bioinformatic analyses reveal a gene cluster (vva0325-vva0336) on the small chromosome of Vibrio vulnificus YJ016 might regulate cyclic-di-GMP levels. The gene cluster encodes a large RTX-like protein (VVA0331), a type I protein secretion system (VVA0332-0336), and a signaling system composing of a sensor kinase (VVA0329), two response regulators with a GGDEF-(VVA0326) and an EAL-domain (VVA0328), respectively. It is hypothesized that they may play roles in pathogenesis through modulating cyclic-di-GMP levels. Previous studies have shown that VVA0326 and VVA0328 possess diguanylate cyclase and phosphodiesterase activity, respectively, in vitro, and regulate intracellular c-di-GMP in V. vulnificus. The first study was to elucidate the subcellular location and functional roles of VVA0331. Results showed VVA0331 existed primarily in a secreted form and regulated by iron. The capabilities of vva0331 mutant strains in adherence and cytotoxicity on cells and virulence in mice were examined in comparison with wild type strain, indicating no difference. The second study was to investigate biological properties of VVA0326 and VVA0328. Deletion in the GGDEF domain of VVA0326 conferred the bacterium a slightly higher swimming motility, less biofilm formation and higher cytotoxicity activity to HEp-2 cells. However, there was no obvious difference between in-frame EAL deletion mutant and the wild type strains. Comparison of the levels of rtxA, vvhA, vva0331 transcripts and RtxA protein in wild type and vva0326 mutant strains indicates that these virulence-associated factors might be regulated by the cyclic-di-GMP signaling system. Furthermore, localization analysis had demonstrated that VVA0326 and VVA0328 were localized at V. vulnificus YJ016 poles by constructing GFP fusion proteins. Taken together, the gene cluster regulated by cyclic-di-GMP may have effects on bacterial virulence in V. vulnificus YJ016. We believe that the findings would be important for understanding the V. vulnificus physiology and pathogenesis mechanism.
[1] P.A. Blake, M.H. Merson, R.E. Weaver, D.G. Hollis, P.C. Heublein, Disease caused by a marine Vibrio. Clinical characteristics and epidemiology, The New England journal of medicine 300 (1979) 1-5.
[2] S.M. Haq, H.H. Dayal, Chronic liver disease and consumption of raw oysters: a potentially lethal combination--a review of Vibrio vulnificus septicemia, The American journal of gastroenterology 100 (2005) 1195-1199.
[3] C.Y. Yuan, C.C. Yuan, D.C. Wei, A.M. Lee, [Septicemia and gangrenous change of the legs caused by marine Vibrio, V. vulnificus--report of a case], Taiwan yi xue hui za zhi 86 (1987) 448-451.
[4] P.R. Hsueh, C.Y. Lin, H.J. Tang, H.C. Lee, J.W. Liu, Y.C. Liu, Y.C. Chuang, Vibrio vulnificus in Taiwan, Emerging infectious diseases 10 (2004) 1363-1368.
[5] S.R. Chiang, Y.C. Chuang, Vibrio vulnificus infection: clinical manifestations, pathogenesis, and antimicrobial therapy, Journal of microbiology, immunology, and infection 36 (2003) 81-88.
[6] Y.C. Chuang, C.Y. Yuan, C.Y. Liu, C.K. Lan, A.H. Huang, Vibrio vulnificus infection in Taiwan: report of 28 cases and review of clinical manifestations and treatment, Clinical infectious diseases 15 (1992) 271-276.
[7] P.A. Gulig, K.L. Bourdage, A.M. Starks, Molecular Pathogenesis of Vibrio vulnificus, Journal of microbiology (Seoul, Korea) 43 Spec No (2005) 118-131.
[8] C. Locht, Molecular aspects of Bordetella pertussis pathogenesis, International microbiology 2 (1999) 137-144.
[9] R. Tamayo, J.T. Pratt, A. Camilli, Roles of cyclic diguanylate in the regulation of bacterial pathogenesis, Annual review of microbiology 61 (2007) 131-148.
[10] C.Y. Chen, K.M. Wu, Y.C. Chang, C.H. Chang, H.C. Tsai, T.L. Liao, Y.M. Liu, H.J. Chen, A.B. Shen, J.C. Li, T.L. Su, C.P. Shao, C.T. Lee, L.I. Hor, S.F. Tsai, Comparative genome analysis of Vibrio vulnificus, a marine pathogen, Genome research 13 (2003) 2577-2587.
[11] J.G. Coote, Structural and functional relationships among the RTX toxin determinants of gram-negative bacteria, FEMS microbiology reviews 8 (1992) 137-161.
[12] E.T. Lally, R.B. Hill, I.R. Kieba, J. Korostoff, The interaction between RTX toxins and target cells, Trends in microbiology 7 (1999) 356-361.
[13] J.H. Lee, M.W. Kim, B.S. Kim, S.M. Kim, B.C. Lee, T.S. Kim, S.H. Choi, Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice, Journal of microbiology (Seoul, Korea) 45 (2007) 146-152.
[14] Y.R. Kim, S.E. Lee, H. Kook, J.A. Yeom, H.S. Na, S.Y. Kim, S.S. Chung, H.E. Choy, J.H. Rhee, Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells, Cellular microbiology 10 (2008) 848-862.
[15] B.C. Lee, S.H. Choi, T.S. Kim, Vibrio vulnificus RTX toxin plays an important role in the apoptotic death of human intestinal epithelial cells exposed to Vibrio vulnificus, Microbes and infection / Institut Pasteur 10 (2008) 1504-1513.
[16] K.J. Satchell, MARTX, multifunctional autoprocessing repeats-in-toxin toxins, Infection and immunity 75 (2007) 5079-5084.
[17] M. Liu, A.F. Alice, H. Naka, J.H. Crosa, The HlyU protein is a positive regulator of rtxA1, a gene responsible for cytotoxicity and virulence in the human pathogen Vibrio vulnificus, Infection and immunity 75 (2007) 3282-3289.
[18] M. Liu, H. Naka, J.H. Crosa, HlyU acts as an H-NS antirepressor in the regulation of the RTX toxin gene essential for the virulence of the human pathogen Vibrio vulnificus CMCP6, Molecular microbiology 72 (2009) 491-505.
[19] S.H. Lee, M.J. Angelichio, J.J. Mekalanos, A. Camilli, Nucleotide sequence and spatiotemporal expression of the Vibrio cholerae vieSAB genes during infection, Journal of bacteriology 180 (1998) 2298-2305.
[20] A.D. Tischler, A. Camilli, Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation, Molecular microbiology 53 (2004) 857-869.
[21] A.D. Tischler, A. Camilli, Cyclic diguanylate regulates Vibrio cholerae virulence gene expression, Infection and immunity 73 (2005) 5873-5882.
[22] A.D. Tischler, S.H. Lee, A. Camilli, The Vibrio cholerae vieSAB locus encodes a pathway contributing to cholera toxin production, Journal of bacteriology 184 (2002) 4104-4113.
[23] D.A. D'Argenio, S.I. Miller, Cyclic di-GMP as a bacterial second messenger, Microbiology (Reading, England) 150 (2004) 2497-2502.
[24] U. Jenal, J. Malone, Mechanisms of cyclic-di-GMP signaling in bacteria, Annual review of genetics 40 (2006) 385-407.
[25] U. Romling, M. Gomelsky, M.Y. Galperin, C-di-GMP: the dawning of a novel bacterial signalling system, Molecular microbiology 57 (2005) 629-639.
[26] F.H. Yildiz, K.L. Visick, Vibrio biofilms: so much the same yet so different, Trends in microbiology 17 (2009) 109-118.
[27] W. Lin, K.J. Fullner, R. Clayton, J.A. Sexton, M.B. Rogers, K.E. Calia, S.B. Calderwood, C. Fraser, J.J. Mekalanos, Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage, Proceedings of the National Academy of Sciences of the United States of America 96 (1999) 1071-1076.
[28] K.L. Sheahan, C.L. Cordero, K.J. Satchell, Identification of a domain within the multifunctional Vibrio cholerae RTX toxin that covalently cross-links actin, Proceedings of the National Academy of Sciences of the United States of America 101 (2004) 9798-9803.
[29] K.J. Fullner, J.J. Mekalanos, In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin, The EMBO journal 19 (2000) 5315-5323.
[30] B.K. Boardman, B.M. Meehan, K.J. Fullner Satchell, Growth phase regulation of Vibrio cholerae RTX toxin export, Journal of bacteriology 189 (2007) 1827-1835.
[31] J.B. Neilands, Iron absorption and transport in microorganisms, Annual review of nutrition 1 (1981) 27-46.
[32] S. Mourino, C.R. Osorio, M.L. Lemos, Characterization of heme uptake cluster genes in the fish pathogen Vibrio anguillarum, Journal of bacteriology 186 (2004) 6159-6167.
[33] Y.C Yang, Analysis of a virulence-associated genomic island in Vibrio vulnificus YJ016, Department of Biological Science and Technology, National Chiao Tung University, 2005, p. 61.
[34] B.K. Boardman, K.J. Satchell, Vibrio cholerae strains with mutations in an atypical type I secretion system accumulate RTX toxin intracellularly, Journal of bacteriology 186 (2004) 8137-8143.
[35] T. Koga, T. Kawata, Composition of major outer membrane proteins of Vibrio vulnificus isolates: effect of different growth media and iron deficiency, Microbiology and immunology 30 (1986) 193-201.
[36] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical biochemistry 72 (1976) 248-254.
[37] J.H. Lee, J.B. Rho, K.J. Park, C.B. Kim, Y.S. Han, S.H. Choi, K.H. Lee, S.J. Park, Role of flagellum and motility in pathogenesis of Vibrio vulnificus, Infection and immunity 72 (2004) 4905-4910.
[38] R.N. Paranjpye, J.C. Lara, J.C. Pepe, C.M. Pepe, M.S. Strom, The type IV leader peptidase/N-methyltransferase of Vibrio vulnificus controls factors required for adherence to HEp-2 cells and virulence in iron-overloaded mice, Infection and immunity 66 (1998) 5659-5668.
[39] L.J. Reed, and H. Muench, A simple method of estimating the 50% endpoints, The American journal of hygiene 27 (1938) 5.
[40] P.C. Braga, D. Ricci, Atomic force microscopy: application to investigation of Escherichia coli morphology before and after exposure to cefodizime, Antimicrobial agents and chemotherapy 42 (1998) 18-22.
[41] M. Micic, D. Hu, Y.D. Suh, G. Newton, M. Romine, H.P. Lu, Correlated atomic force microscopy and fluorescence lifetime imaging of live bacterial cells, Colloids and surfaces B-biointerfaces 34 (2004) 205-212.
[42] M.E. Bauer, R.A. Welch, Characterization of an RTX toxin from enterohemorrhagic Escherichia coli O157:H7, Infection and immunity 64 (1996) 167-175.
[43] M.C. Kuo, L.F. Chou, H.Y. Chang, Evolution of exceptionally large genes in prokaryotes, Journal of molecular evolution 66 (2008) 333-349.
[44] I. Letunic, R.R. Copley, B. Pils, S. Pinkert, J. Schultz, P. Bork, SMART 5: domains in the context of genomes and networks, Nucleic acids research 34 (2006) D257-260.
[45] R. De Mot, G. Schoofs, A. Roelandt, P. Declerck, P. Proost, J. Van Damme, J. Vanderleyden, Molecular characterization of the major outer-membrane protein OprF from plant root-colonizing Pseudomonas fluorescens, Microbiology (Reading, England) 140 ( Pt 6) (1994) 1377-1387.
[46] J.M. Hardham, L.V. Stamm, Identification and characterization of the Treponema pallidum tpn50 gene, an ompA homolog, Infection and immunity 62 (1994) 1015-1025.
[47] F.H. Yildiz, G.K. Schoolnik, Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation, Proceedings of the National Academy of Sciences of the United States of America 96 (1999) 4028-4033.
[48] A. Colombatti, P. Bonaldo, R. Doliana, Type A modules: interacting domains found in several non-fibrillar collagens and in other extracellular matrix proteins, Matrix (Stuttgart, Germany) 13 (1993) 297-306.
[49] G. Kelly, S. Prasannan, S. Daniell, K. Fleming, G. Frankel, G. Dougan, I. Connerton, S. Matthews, Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli, Nature structural biology 6 (1999) 313-318.
[50] B. Kenny, S. Taylor, I.B. Holland, Identification of individual amino acids required for secretion within the haemolysin (HlyA) C-terminal targeting region, Molecular microbiology 6 (1992) 1477-1489.
[51] M. Desvaux, N.J. Parham, I.R. Henderson, The autotransporter secretion system, Research in microbiology 155 (2004) 53-60.
[52] I.R. Henderson, J.P. Nataro, Virulence functions of autotransporter proteins, Infection and immunity 69 (2001) 1231-1243.
[53] R. Munch, K. Hiller, A. Grote, M. Scheer, J. Klein, M. Schobert, D. Jahn, Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes, Bioinformatics (Oxford, England) 21 (2005) 4187-4189.
[54] M.S. Donnenberg, J.B. Kaper, Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector, Infection and immunity 59 (1991) 4310-4317.
[55] E.C. Todd, Costs of acute bacterial foodborne disease in Canada and the United States, International journal of food microbiology 9 (1989) 313-326.
[56] R. Hengge, Principles of c-di-GMP signalling in bacteria, Nature reviews 7 (2009) 263-273.
[57] A. Nakhamchik, C. Wilde, D.A. Rowe-Magnus, Cyclic-di-GMP regulates extracellular polysaccharide production, biofilm formation, and rugose colony development by Vibrio vulnificus, Applied and environmental microbiology 74 (2008) 4199-4209.
[58] P.A. Cotter, S. Stibitz, c-di-GMP-mediated regulation of virulence and biofilm formation, Current opinion in microbiology 10 (2007) 17-23.
[59] U. Romling, D. Amikam, Cyclic di-GMP as a second messenger, Current opinion in microbiology 9 (2006) 218-228.
[60] R.P. Ryan, Y. Fouhy, J.F. Lucey, J.M. Dow, Cyclic di-GMP signaling in bacteria: recent advances and new puzzles, Journal of bacteriology 188 (2006) 8327-8334.
[61] J.S. Matson, J.H. Withey, V.J. DiRita, Regulatory networks controlling Vibrio cholerae virulence gene expression, Infection and immunity 75 (2007) 5542-5549.
[62] K.W. Chang, Characterization of a gene cluster, vva0326-vva0329, encoding a novel signal transduction system in Vibrio vulnificus YJ016, Department of Biological Science and Technology, National Chiao Tung University, 2007, p. 51.
[63] T. Kohler, L.K. Curty, F. Barja, C. van Delden, J.C. Pechere, Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili, Journal of bacteriology 182 (2000) 5990-5996.
[64] G.A. O'Toole, R. Kolter, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Molecular microbiology 28 (1998) 449-461.
[65] C.S. Yu, C.J. Lin, J.K. Hwang, Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions, Protein science 13 (2004) 1402-1406.
[66] R. Nair, B. Rost, Mimicking cellular sorting improves prediction of subcellular localization, Journal of molecular biology 348 (2005) 85-100.
[67] R. Simm, M. Morr, A. Kader, M. Nimtz, U. Romling, GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility, Molecular microbiology 53 (2004) 1123-1134.
[68] M.S. Strom, R.N. Paranjpye, Epidemiology and pathogenesis of Vibrio vulnificus, Microbes and infection / Institut Pasteur 2 (2000) 177-188.
[69] B. Lim, S. Beyhan, J. Meir, F.H. Yildiz, Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation, Molecular microbiology 60 (2006) 331-348.
[70] J.J. Fan, C.P. Shao, Y.C. Ho, C.K. Yu, L.I. Hor, Isolation and characterization of a Vibrio vulnificus mutant deficient in both extracellular metalloprotease and cytolysin, Infection and immunity 69 (2001) 5943-5948.
[71] L.F. Chou, H.L. Peng, Y.C. Yang, M.C. Kuo, H.Y. Chang, Localization and characterization of VVA0331, a 489-kDa RTX-like protein, in Vibrio vulnificus YJ016, Archives of microbiology 191 (2009) 441-450.
[72] S.E. Lee, S.H. Shin, S.Y. Kim, Y.R. Kim, D.H. Shin, S.S. Chung, Z.H. Lee, J.Y. Lee, K.C. Jeong, S.H. Choi, J.H. Rhee, Vibrio vulnificus has the transmembrane transcription activator ToxRS stimulating the expression of the hemolysin gene vvhA, Journal of bacteriology 182 (2000) 3405-3415.
[73] M.K. Jones, J.D. Oliver, Vibrio vulnificus: disease and pathogenesis, Infection and immunity 77 (2009) 1723-1733.
[74] A. Kader, R. Simm, U. Gerstel, M. Morr, U. Romling, Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium, Molecular microbiology 60 (2006) 602-616.
[75] R.P. Ryan, Y. Fouhy, J.F. Lucey, B.L. Jiang, Y.Q. He, J.X. Feng, J.L. Tang, J.M. Dow, Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris, Molecular microbiology 63 (2007) 429-442.
[76] F. Rao, Y. Qi, H.S. Chong, M. Kotaka, B. Li, J. Li, J. Lescar, K. Tang, Z.X. Liang, The Functional Role of a Conserved Loop in EAL Domain-Based C-di-GMP Specific Phosphodiesterase, Journal of bacteriology (2009).
[77] A.J. Schmidt, D.A. Ryjenkov, M. Gomelsky, The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains, Journal of bacteriology 187 (2005) 4774-4781.
[78] A. Gudmundsdottir, P.E. Bell, M.D. Lundrigan, C. Bradbeer, R.J. Kadner, Point mutations in a conserved region (TonB box) of Escherichia coli outer membrane protein BtuB affect vitamin B12 transport, Journal of bacteriology 171 (1989) 6526-6533.
[79] D.A. Ryjenkov, M. Tarutina, O.V. Moskvin, M. Gomelsky, Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain, Journal of bacteriology 187 (2005) 1792-1798.
[80] M.O. Andrade, M.C. Alegria, C.R. Guzzo, C. Docena, M.C. Rosa, C.H. Ramos, C.S. Farah, The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri, Molecular microbiology 62 (2006) 537-551.
[81] N. Tschowri, S. Busse, R. Hengge, The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli, Genes and development 23 (2009) 522-534.
[82] A. Janakiraman, M.B. Goldberg, Recent advances on the development of bacterial poles, Trends in microbiology 12 (2004) 518-525.
[83] R. Simon, Priefer, U., and Pühler, A., A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria, Biotechnology 1 (1983) 784-791.
[84] J.P. Furste, W. Pansegrau, R. Frank, H. Blocker, P. Scholz, M. Bagdasarian, E. Lanka, Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector, Gene 48 (1986) 119-131.
[85] W.G. Miller, S.E. Lindow, An improved GFP cloning cassette designed for prokaryotic transcriptional fusions, Gene 191 (1997) 149-153.
[86] M. Stanic, [A simplification of the estimation of the 50 percent endpoints according to the Reed and Muench method.], Pathologia et microbiologia 26 (1963) 298-302.