研究生: |
周佾霖 Chou, Yih-Lin |
---|---|
論文名稱: |
彈性變向佈料高速3D成形技術:金屬材料之佈料系統與製程開發 High Speed Flexible 3D Freeform Techniques: Material Dispensing System and Process Development for Metals |
指導教授: |
曹哲之
Tsao, Che-Chih |
口試委員: |
張禎元
Chang, Jen-Yuan 葉均蔚 Yeh, Jien-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 快速原型 、積層製造 、金屬模具 、異型水路模具 |
外文關鍵詞: | Rapid Prototyping, Additive Manufacturing, injection molding, conformal cooling |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的是發展「彈性變向佈料高速3D成形技術」製造金屬材料製品的佈料系統及製造程序。研究以錫合金及鋼鐵為材料,以模具為應用目標。經由研究過程中實驗裝置的設計與試驗,作定性地觀察及系統性地記錄與歸納,了解錫合金及鋼鐵材料的熔化、流動、結合、凝固等成形特性,讓熔融材料能依據佈料頭的設計以出料、成形,完成彈性變向佈料高速3D成形技術的幾個成形基本動作的試驗。在錫合金成形方面,使用烙鐵系統作為加熱源,選擇紅銅合金來製作佈料頭,並根據成形的目的,設計不同的佈料頭樣式,讓熔融材料能順利且連續地成形。在鋼鐵成形方面,使用微電弧焊接機作為系統的加熱源,根據熔焊加工技術的要領,再加上佈料頭、微分模具的設計與配置,完成彈性變向佈料高速3D成形技術的成形基本動作。本研究目標為製作表面光滑度更好的金屬模具,使用錫合金,製作消失式模鑄造所需使用的模具,取代原本製蠟型需要的鋁模,可大幅降低生產成本;使用鋼鐵材料,可以製作具有複雜異型冷卻水路的塑膠射出成形模具模心,藉由一加減複合加工的製程方式,減少模具生產時間,也因不使用雷射,可顯著降低製造上的成本。
The purpose of this research is to develop the material dispensing head and manufacturing processes of the new “Flexible 3D Freeform Techniques” using tin alloys and steel. The research made systematic tests and observations using prototype devices of various designs with the target metals in order to understand the forming characteristics of molten metal, such as melting, flowing, bonding and solidifying. By analyzing 3D geometry, five basic process operations were summarized as the fundamental operations to build a 3D object by the Flexible 3D Freeform Techniques. In the forming of tin alloys, a soldering iron system was used as the heat source and copper was used to make the dispensing heads. Various dispensing head prototypes were developed and successfully tested to dispense and form tin alloys of different geometric shape features and demonstrated the five basic process operations. In the forming of steels, a micro plasma arc welding system was used as the heat source and similar demonstrations were achieved. The potential application of this technique is rapid prototyping and production of injection molding molds with good surface finish at significantly higher speeds and lower costs compared to existing rapid prototyping processes.
[1]Kruth, J.-P. et al., “Progress in Additive Manufacturing and Rapid Prototyping”, CIRP Annals - Manufacturing Technology, Volume 47, Issue 2, 1998, Pages 525-540.
[2]Bremen, S. et al., “Selective Laser Melting”, Laser Technik Journal, April 2012, No. 2.
[3]Lü, L. et al., “Selective Laser Sintering” and “Metal-Based System via Laser Melting”, Chapter 5 and 6 in Laser-Inducted Materials and Processes for Rapid Prototyping, Springer Science+Business Media, New York, 2001, Pages 89-109 and Pages 143-152.
[4]Murr, L.E. et al., “Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies”, Journal of Materials Science & Technology, Volume 28, Issue 1, January 2012, Pages 1-14.
[5]Gibson, I. et al., “Directed Energy Deposition Processes”, Chapter 10 in Additive Manufacturing Technologies, Springer Science+Business Media, New York, 2015, Pages 245-368.
[6]Anonymous, “工研院發表國內第一台金屬3D列印設備 金工飾品吸睛”, product introduction from工業技術研究院website, retrieved June 2015, https://www.itri.org.tw/chi/Content/NewsLetter/Contents.aspx?SiteID=1&MmmID=620605426331276153&MSid=653633446251642612
[7]Anonymous, “EOSINT M 280, eos”, product introduction from凱元商業有限公司website, retrieved June 2016, http://www.kaiyuan.com.tw/zh-tw/1-2684-72407/product/EOSINT-M-280-eos-id401369.html
[8]曹哲之,科技部專題研究計畫書「彈性變向佈料高速3D成形技術」計畫編號MOST 103-2218-E-007-011,2014 (未公開文件)。
[9]Sachs, E. et al., “Production of Injection Molding Tooling With Conformal Cooling Channels Using the Three Dimensional Printing Process”, Polymer Engineering & Science, Volume 40, Issue 5, May 2000, Pages 1232-1247.
[10]Xu, X. et al., “The Design of Conformal Cooling Channels in Injection Molding Tooling”, Polymer Engineering & Science, Volume 41, Issue 7, July 2001, Pages 1265-1279.
[11]Dimla, D.E. et al., “Design and optimisation of conformal cooling channels in injection moulding tools”, Journal of Materials Processing Technology, Volumes 164-165, 15 May 2005, Pages 1294-1300.
[12]Frick L., “The Difference Between Machined and 3D Printed Metal Injection Molds”, the news of Machine Design website, 23 June 2014, http://machinedesign.com/3d-printing/difference-between-machined-and-3d-printed-metal-injection-molds
[13]Pal, D.K. and Ravi, B., “Rapid tooling route selection and evaluation for sand and investment casting”, Virtual and Physical Prototyping Journal 2 (4), 197-207, 2007.
[14]張雲開,意鑫合金股份有限公司,私人聯訊。
[15]Amend, P. et al., “A fast and flexible method for manufacturing 3D molded interconnect devices by the use of a rapid prototyping technology”, Journal of Physics Procedia, Volume 5, Part B, 2010, Pages 561–572.
[16]Yadroitsev, I. et al., “Parametric analysis of the selective laser melting process”, Applied Surface Science, Volume 253, Issue 19, 31 July 2007, Pages 8064-8069.
[17]Anonymous, EOS (Germany) product brochure,數可科技公司(EOS代理), 2013台北國際光電展, 18 June 2013.
[18]Lamikiz, A. et al., “Laser polishing of parts built up by selective laser sintering”, International Journal of Machine Tools & Manufacture 47 (2007) 2040–2050.
[19]Anonymous, “Laser Deposition Technology (LDT), LENS® technology”, product introduction from RPM Innovations, Inc. website, retrieved November 2015, http://www.rpm-innovations.com/laser_deposition_technology
[20]Anonymous, product introduction from OPM Laboratory website, retrieved November 2015, http://opmlabenglish.net/index.php?option=com_content&view=article&id=113:concept2013-2&catid=34:opm
[21]楊文禮,科盛科技。
[22]鄭中緯,工業技術研究院南分院積層製造與雷射應用中心,國立清華大學動力機械工程學系演講,2013年10月15日。
[23]Anonymous, “3D列印新材料之創新製造技術”, the news from中華民國科技部website, retrieved October 2015, https://www.most.gov.tw/folksonomy/detail?subSite=&l=en&article_uid=63a1e492-144e-4012-b160-2ae287bd6b91&menu_id=9aa56881-8df0-4eb6-a5a7-32a2f72826ff&content_type=P&view_mode=listView
[24]Skylar-Scott, M.A. et al., “Laser-assisted direct ink writing of planar and 3D metal architectures”, PNAS, Volume 113, Number 22, 31 May 2016, Pages 6137-6142.
[25]Chen, Y. et al., “A layerless additive manufacturing process based on CNC accumulation”, Rapid Prototyping Journal, Volume 17, Issue 3, 2011, Pages 218-227.
[26]Zinn, S. and Semiatin, S.L., “Introduction”, Chapter 1 in Elements of Induction Heating: Design, Control, and Applications, 2nd edition, Carnes Publication Services, USA, 1988, Pages 1-8.
[27]Wikipedia, “Gas tungsten arc welding”, 2015.
[28]Wikipedia, “Plasma arc welding”, 2015.
[29]Dzelnitzki, D., “Plasma welding of aluminium materials Direct or alternating current?”, EWM HIGHTEC WELDING GmbH, retrieved May 2016.
[30]Anonymous, “Plasma Welding”, the information from龍華高特焊接商行website, retrieved November 2015, http://plasmawelding.myweb.hinet.net/link.htm
[31]Anonymous, “The Plasma Arc Welding Process”, product introduction from Pro-Fusion website, retrieved November 2015, http://www.pro-fusiononline.com/welding/plasma.htm
[32]Pro-Fusion, “MANUAL DUAL ARC 82 HFP - E&H -MARCH 2014”, instruction manual of the DUAL ARC 82 HFP machine, March 2014, http://www.pro-fusiononline.com/products/micro_plasma_micro_tig.htm
[33]Kalpakjian, S. and Schmid, S., “Joining Processes and Equipment”, Chapter 30 in Manufacturing Engineering and Technology, 6th edition, Prentice Hall, Singapore, 2010, Pages 870-871.