研究生: |
簡歆蕙 Jian, Xin-Hui |
---|---|
論文名稱: |
彈性複合結構三維成型技術的開發與靜電裝置整合的應用 Development of 3D Manufacturing Technology for Flexible Composite Structures and Its Application with Integrated Electrostatic Devices |
指導教授: |
蘇育全
Su, Yu-Chuan |
口試委員: |
陳紹文
Chen, Shao-Wen 陳宗麟 Chen, Tsung-Lin |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 觸覺回饋 、三維光固化成型 、靜電驅動 、微型致動器 、氣動閥門 |
外文關鍵詞: | Haptic feedback, 3D stereolithography or 3D optical curing molding, Electrostatic actuation, Microactuator, Pneumatic valve |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著虛擬實境和擴增實境技術的快速發展,觸覺回饋技術在提升使用者體驗方面扮演著越來越重要的角色。本研究旨在開發一種基於三維光固化成型技術的微型觸覺致動器,利用靜電力控制氣動閥門的開關,實現低功耗、高性能的觸覺回饋輸出。
本研究設計出一款以氣壓為工作流體的微形單點觸覺致動器,且配合本實驗室高度成熟的三維光固化列印技術,可製作不同機械特性的結構並加以結合,形成含有彈性複合結構之觸覺制動器。首先探討了不同材料配方和製程參數對微型觸覺致動器性能的影響。實驗結果顯示,透過調整光固化樹脂的成分比例和固化條件,可以精確控制致動器的機械性能,使其滿足設計需求。此外論文還深入研究了不同流阻結構的設計,分析其對氣動閥門開關效率的影響。透過引入降壓彈簧和加速彈簧等機制,可以有效降低閥門的操作電壓和遲滯效應,提升觸覺回饋的反應速度和精確度。
本論文中展示的微形單點觸覺致動器體積大小在 450mm3 以內,直徑 2 mm 的彈性薄膜在 10 kPa 的氣壓作用下,使凸起高度達到 12 mm,未使用降壓彈簧時,操作電壓高達815V,加入降壓彈簧後,操作電壓降為231 V;未使用加速彈簧時,切換時間一個週期約為7秒,加入加速彈簧後切換時間一個週期縮短為 1.2秒。這些成果不僅提供了一種低成本、高效率的微型觸覺致動器製造方法,也為未來觸覺回饋技術的發展提供了新的思路和方向。
With the rapid advancement of virtual reality (VR) and augmented reality (AR) technologies, haptic feedback technology has played an increasingly crucial role in enhancing user experience. This study aims to develop a micro-haptic actuator based on three-dimensional (3D) photocuring technology that utilizes electrostatic force to control the switching of pneumatic valves, achieving low power consumption and high-performance haptic feedback output.
This research has designed a micro-single-point haptic actuator that uses air pressure as the working fluid. Combined with the highly mature 3D photocuring printing technology of our laboratory, we can fabricate structures with different mechanical properties and combine them to form a haptic actuator with an elastic composite structure. First, the impact of different material formulations and process parameters on the performance of the micro-haptic actuator was investigated. The experimental results show that by adjusting the component ratio of the photocuring resin and the curing conditions, the mechanical properties of the actuator can be precisely controlled to meet design requirements. In addition, the paper also delves into the design of different flow resistance structures and analyzes their impact on the efficiency of the pneumatic valve switching. By introducing mechanisms such as a pressure-reducing spring and an acceleration spring, the operating voltage and hysteresis effect of the valve can be effectively reduced, improving the response speed and accuracy of haptic feedback.
The micro-single-point haptic actuator presented in this thesis has a volume size within 450 mm3. The 2 mm diameter elastic diaphragm achieves a protrusion height of 12 mm under 10 kPa air pressure. The operating voltage is as high as 815 V without the use of a pressure-reducing spring, but it drops to 231 V when the pressure-reducing spring is added. Without the use of an acceleration spring, the switching time for one cycle is about 7 seconds, but with the addition of an acceleration spring, the switching time for one cycle is shortened to 1.2 seconds. These results not only provide a low-cost and high-efficiency manufacturing method for micro-haptic actuators but also offer new ideas and directions for the future development of haptic feedback technology.
1. Malas, A., Isakov, D., Couling, K., & Gibbons, G. J. (2019). Fabrication of high permittivity resin composite for vat photopolymerization 3D printing: Morphology, thermal, dynamic mechanical and dielectric properties. Materials, 12(23), 3818.
2. Yin, J., Hinchet, R., Shea, H., & Majidi, C. (2021). Wearable soft technologies for haptic sensing and feedback. Advanced Functional Materials, 31(39), 2007428.
3. Biswas, S., & Visell, Y. (2019). Emerging material technologies for haptics. Advanced Materials Technologies, 4(4), 1900042.
4. Wu, X., Kim, S. H., Zhu, H., Ji, C. H., & Allen, M. G. (2012). A refreshable braille cell based on pneumatic microbubble actuators. Journal of Microelectromechanical Systems, 21(4), 908-916.
5. Sadeghi, M. M., Kim, H. S., Peterson, R. L. B., & Najafi, K. (2016). Electrostatic micro-hydraulic systems. Journal of Microelectromechanical Systems, 25(3), 557-569.
6. Leroy, E., Hinchet, R., & Shea, H. (2020). Multimode hydraulically amplified electrostatic actuators for wearable haptics. Advanced Materials, 32(36), 2002564.
7. Yin, L. J., Zhao, Y., Zhu, J., Yang, M., Zhao, H., Pei, J. Y., ... & Dang, Z. M. (2021). Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor. Nature communications, 12(1), 4517.
8. Schafer, K. J., Hales, J. M., Balu, M., Belfield, K. D., Van Stryland, E. W., & Hagan, D. J. (2004). Two-photon absorption cross-sections of common photoinitiators. Journal of Photochemistry and Photobiology A: Chemistry, 162(2-3), 497-502.
9. Park, S., Mondal, K., Treadway III, R. M., Kumar, V., Ma, S., Holbery, J. D., & Dickey, M. D. (2018). Silicones for stretchable and durable soft devices: Beyond Sylgard-184. ACS applied materials & interfaces, 10(13), 11261-11268.
10. Venzac, B., Deng, S., Mahmoud, Z., Lenferink, A., Costa, A., Bray, F., ... & Le Gac, S. (2021). PDMS curing inhibition on 3D-printed molds: why? Also, how to avoid it?. Analytical chemistry, 93(19), 7180-7187.
11. Grove, T. T., Masters, M. F., & Miers, R. E. (2005). Determining dielectric constants using a parallel plate capacitor. American journal of physics, 73(1), 52-56.
12. Zhai, Y., Wang, Z., Kwon, K. S., Cai, S., Lipomi, D. J., & Ng, T. N. (2021). Printing multi‐material organic haptic actuators. Advanced Materials, 33(19), 2002541.
13. De Volder, M., & Reynaerts, D. (2010). Pneumatic and hydraulic microactuators: a review. Journal of Micromechanics and microengineering, 20(4), 043001.
14. Jeong, O. C., & Konishi, S. (2008). Fabrication of a peristaltic micro pump with novel cascaded actuators. Journal of Micromechanics and Microengineering, 18(2), 025022.
15. Gandhi, P. S., Savalia, A., & Shah, H. (2011, January). Design, fabrication, and characterization of a pneumatic micro actuator. In ASME International Mechanical Engineering Congress and Exposition (Vol. 54976, pp. 455-461).
16. Mutzenich, S., Vinay, T., & Rosengarten, G. (2004). Analysis of a novel micro-hydraulic actuation for MEMS. Sensors and Actuators A: Physical, 116(3), 525-529.
17. Grove, T., M. Masters, and R. Meirs, Determining Dielectric Constants Using a Parallel Plate Capacitor. Physics Faculty Publications, 2005. 73.
18. A. With ana , D. Groeger, J. Steimle, presented at UIST ‘18: The 31st Annual ACM Symp. on User Interface Software and Technolog , Berlin, Germany, October 2018
19. M. L. McLaughlin, G. Sukhatme, J. Hespanha, Touch in Virtual Environments: Haptics and the Design of Interactive Systems ,Prentice Hall PTR, Upper Saddle River, NJ 2001.
20. 何謂玻璃轉化溫度(Tg, Glass Transition Temperature) https://www.researchmfg.com/2016/08/tg-glass-transition-temperature/
21. 劉凡瑄,高解析度三維藻膠複合結構的快速曝光成型技術,國立清華大學工程與系統科學系,碩士論文,中華民國109年。
22. 光固化3D列印原理解密!SLA、DLP、LCD列印技術比較!https://www.techchickensoup.com/technology/light-curing-3d-printing/