簡易檢索 / 詳目顯示

研究生: 芮嘉瑋
Jui, Chia-Wei.
論文名稱: 專利權利範圍為基礎之創新技術策略分析:以雙光子聚合及雷射干涉微影技術為例
Claim-Based Patent Informatics for Strategic Analysis of Technology Innovation – Using TPP- and LIL-Related Patents as Case Examples
指導教授: 傅建中
FU, CHIEN-CHUNG
張瑞芬
Trappey, Amy J.C.
口試委員: 胡美智
HU, MEI-CHIH
林榮慶
Lin, Zone-Ching
宋皇志
Sung, Huang-Chih
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 158
中文關鍵詞: 專利分析申請專利範圍(權利請求項)申請專利範圍為基之技術分析獨立項專利檢索奈米結構奈米級雙光子聚合雙光子聚合3D列印雷射干涉微影
外文關鍵詞: Patent Analysis, Claim, Claim-based Technology Analysis, Independent Claim, Patent Search, Nanostructure, Nanoscale, Two-Photon Polymerization (TPP), Two Photon Polymerization based 3D Printing (TPP-3DP), Laser Interference Lithography (LIL)
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 專利是研發活動的主要產出,可以用來預測技術發展趨勢,分析競爭對手的市場地位,評估創新政策的影響。為了更系統化整理專利資料,用以將專利資訊透過整合、比較與解釋正確的轉換為企業決策有用的情報,本研究分別以雙光子聚合3D列印(Two photon polymerization based 3D printing, TPP-3DP)和雷射干涉微影(LIL)二個技術主題為例進行深度的美國專利技術分析,包括專利活動分析、相對研究能力分析、專利引證與引證族譜分析,從而展開本研究以申請專利範圍為基(claim-based)的分析架構,包括關鍵專利權人專利監控、專利技術的分群、新興應用技術探勘、訴訟判決分析等研究調查,用以提供企業決策者或研發主管有用的情報。
    因此,本研究係以一種申請專利範圍為基的技術分析(claim-based technology analysis)的新的方法展開一種申請專利範圍為基的分析架構,主要係透過系統化地解析專利文件的申請專利範圍(claim),能夠清楚界定專利技術特徵、精準的掌握企業專利申請布局的方向、有效掌握該技術重要廠商技術發展趨勢、洞悉新興技術與市場應用機會,從而提供決策者可靠又精確的情報以協助企業規劃研發策略藍圖。此外,由於美國專利的品質會在訴訟過程中受到最嚴厲的考驗與審查,本研究又以所提出的申請專利範圍為基的分析方法,對TPP-3DP技術領域中之美國專利訴訟案件進行訴訟判決分析,分析其訴訟判決歷程中法官對系爭專利(patents-in-suit)申請專利範圍解釋(claim construction)的見解,作為企業提升專利品質與專利管理的借鏡,從而提供企業各個面向的創新管理策略與建議。


    Patents are the main output of R&D activities and can be used to predict technology trends, analyze competitors' market positions, and assess the impact of innovation policies. In order to more systematically organize patent data, the patent information is used to correctly transformed into the useful information for enterprise decision-making through integration, comparison and interpretation. This study uses two photon polymerization based 3D printing technique (TPP- 3DP) and Laser Interference lithography (LIL) are two technical topics for the purpose of conducting in-depth analysis of US patent technology, including patent activity analysis, relative R&D ability analysis, patent citation and citation genealogy analysis, so as to develop a claim-based analysis framework of this study, including key patentee patent monitoring, patented technology clustering, emerging application technology exploration, litigation judgment analysis, etc., to provide useful information for corporate decision makers or R&D supervisors.
    Therefore, this study develops a patent claim-based analysis framework with a new method of claim-based technology analysis. It mainly through the systematic analysis of claims of patent documents, so that it can clearly define the features of patent technology, accurately grasp the direction of enterprise patent application layout, effectively grasp the technological development trend of important manufacturers of this technology, and explore emerging technologies and their markets opportunities, so as to provide decision makers with reliable and accurate intelligence to assist companies in planning their R&D strategy blueprints. In addition, since the quality of US patents will be subjected to the most rigorous tests and examinations during litigation, this study also uses the proposed claim-based analysis method to analyze the litigation judgments of US patent litigation cases in the TPP-3DP technical field. Analyzing the opinions of the judges on claim construction of the patents-in-suit in the process of litigation judgment to serve as good examples for enterprises to improve patent quality and patent management, and provide strategies and recommendations for all aspects of enterprise innovation management.

    封面………………………………………………………………………………………………Ⅰ 中文摘要…………………………………………………………………………………………Ⅱ 英文摘要…………………………………………………………………………………………Ⅲ 致謝辭……………………………………………………………………………………………Ⅳ 目錄………………………………………………………………………………………………Ⅴ 圖目錄……………………………………………………………………………………………Ⅷ 表目錄……………………………………………………………………………………………Ⅹ 1. 緒論………………………………………………………………………………………… 1 1.1 研究背景…………………………………………………………………………………… 1 1.2 研究動機…………………………………………………………………………………… 2 1.3 研究目的…………………………………………………………………………………… 4 1.4 研究限制…………………………………………………………………………………… 6 1.5 研究架構…………………………………………………………………………………… 6 2. 文獻探討…………………………………………………………………………………… 7 2.1 專利概念與專利制度介紹………………………………………………………………… 7 2.2 專利分析…………………………………………………………………………………… 8 2.2.1 專利分析的重要性及其目的………………………………………………………… 8 2.2.2 專利檢索的技巧……………………………………………………………………… 10 2.2.3 專利分析的結果以視覺化的方式呈現-專利地圖………………………………… 12 2.2.4 專利分析分為定量分析和定性分析………………………………………………… 12 2.3 群集分析…………………………………………………………………………………… 13 2.3.1 文件特徵分析………………………………………………………………………… 14 2.3.2 資料分群…………………………………………………………………………… 15 2.4 專利訴訟與權利請求項撰寫品質的關聯………………………………………………… 16 2.5 雙光子聚合………………………………………………………………………………… 18 2.5.1 背景…………………………………………………………………………………… 18 2.5.2 雙光子聚合基本原理(雙光子吸收效應) …………………………………………… 19 2.5.3 雙光子聚合技術文獻回顧…………………………………………………………… 20 2.5.4 雙光子聚合技術的優勢……………………………………………………………… 21 2.5.5 雙光子聚合的應用範疇……………………………………………………………… 22 2.6 雷射干涉微影…………………………………………………………………………… 23 2.6.1 背景………………………………………………………………………………… 23 2.6.2 雷射干涉微影基本原理……………………………………………………………… 23 2.6.3 雷射干涉微影技術文獻回顧………………………………………………………… 24 2.6.4 雷射干涉微影技術的優勢…………………………………………………………… 27 2.6.5 雷射干涉微影的應用範疇…………………………………………………………… 27 3. 研究方法論……………………………………………………………………………… 29 3.1 選定主題……………………………………………………………………………… 30 3.2 資料蒐集……………………………………………………………………………… 30 3.2.1 專利資料庫的建置……………………………………………………………… 30 3.2.2 釐清檢索目的……………………………………………………………………… 31 3.2.3 專利檢索策略與流程…………………………………………………………… 33 3.3 統計專利資訊…………………………………………………………………………… 35 3.4 專利分析………………………………………………………………………………… 35 3.4.1 專利活動分析…………………………………………………………………… 35 3.4.2 相對研究能力分析……………………………………………………………… 36 3.4.3 專利引證分析與引證族譜分析………………………………………………… 37 3.4.4 以申請專利範圍為基的分析架構……………………………………………… 38 3.5 企業創新管理策略與建議……………………………………………………………… 43 4. 實例驗證……………………………………………………………………………… 45 4.1 實例一:雙光子聚合技術…………………………………………………………… 45 4.1.1 闡明主題………………………………………………………………………… 45 4.1.2 專利檢索結果…………………………………………………………………… 46 4.1.3 統計專利資訊…………………………………………………………………… 49 4.1.4 專利分析………………………………………………………………………… 49 4.1.5 比較分析IPDSS系統使用K-means演算法專利分群…………………………… 72 4.1.6 小結與建議……………………………………………………………………… 75 4.2 實例二:雷射干涉微影技術………………………………………………………… 77 4.2.1 闡明主題………………………………………………………………………… 77 4.2.2 專利檢索結果…………………………………………………………………… 78 4.2.3 統計專利資訊…………………………………………………………………… 79 4.2.4 專利分析………………………………………………………………………… 80 4.2.5 比較分析IPDSS系統使用K-means演算法專利分群………………………… 103 4.2.6 小結與建議………………………………………………………………………… 107 5. 訴訟案例研析………………………………………………………………………… 109 5.1 雙光子聚合技術訴訟案件基本介紹………………………………………………… 109 5.2 訴訟案例一…………………………………………………………………………… 110 5.2.1 訴訟案件基本介紹……………………………………………………………… 110 5.2.2 系爭專利介紹…………………………………………………………………… 113 5.2.3 企業創新管理策略建議…………………………………………………………… 116 5.3 訴訟案例二…………………………………………………………………………… 117 5.3.1 訴訟案件基本介紹……………………………………………………………… 117 5.3.2 系爭專利介紹…………………………………………………………………… 118 5.3.3 企業創新管理策略建議………………………………………………………… 123 5.4 訴訟案例三…………………………………………………………………………… 124 5.4.1 訴訟案件基本介紹………………………………………………………………… 124 5.4.2 系爭專利介紹……………………………………………………………………… 127 5.4.3 企業創新管理策略建議 …………………………………………………………… 130 6. 結論……………………………………………………………………………………… 131 參考文獻……………………………………………………………………………………… 136 附錄…………………………………………………………………………………………… 153 期刊著作清單………………………………………………………………………………… 158

    [1] 呂英治,洪敏雄,2004,奈米製造技術,成功大學材料科學及工程學系,科學發展,第374期,第67-69頁。
    [2] 鍾啟東,2003,奈米科技簡介,臺肥月刊,44:4,第54-57頁,檢自 http://www.taifer.com.tw/taifer/tf/043009/62.htm
    [3] 尹邦躍,2002,奈米時代,台北:五南圖書出版社,第14-19頁。
    [4] Siegel, R.W. and Kear, B., 2000, Applications: consolidated nanostructures. In: Roco, M.C., Williams, R.S. and Alivisatos, P. (Eds.), Nanotechnology research directions: IWGN workshop report, Netherlands: Springer, pp. 97-106.
    [5] Siegel, R.W., Hu, E. and Roco, M.C. (Eds.), 1999, Nanostructure science and technology, Dordrecht, Netherlands: Kluwer Academic Publishers, pp. 1-327.
    [6] Yu, S., Sun, C.J. and Chow, G.M., 2007, Chemical synthesis of nanostructured particles and films. In: Koch, C.C. (Ed.), Nanostructured materials: processing, properties and applications, 2nd ed. Norwich, NY: William Andrew Publishing, pp. 3-34.
    [7] Ho, J.W., Wee, Q., Dumond, J., Tay, A. and Chua, S.J., 2013, “Versatile pattern generation of periodic, high aspect ratio Si nanostructure arrays with sub-50-nm resolution on a wafer scale,” Nanoscale Res Lett, Vol. 8, No. 1, pp. 506.
    [8] Thiyagarajan, P., Ahn, H.J., Lee, J.S., Yoon, J.C. and Jang, J.H., 2013, “Hierarchical metal/semiconductor nanostructure for efficient water splitting,” Small, Vol. 9, No. 13, pp. 2341-2347.
    [9] Masudy-Panah, S., Zhuk, S., Tan, H.R., Gong, X. and Dalapati, G.X., 2018, “Palladium nanostructure incorporated cupric oxide thin film with strong optical absorption, compatible charge collection and low recombination loss for low cost solar cell applications,” Nano Energy, Vol. 46, pp. 158-167.
    [10] Fallahazad, P., Naderi, N., Eshraghi, M.J. and Massoudi, A., 2018, “Combination of surface texturing and nanostructure coating for reduction of light reflection in ZnO/Si heterojunction thin film solar cell,” J Mater Sci Mater Electron, Vol. 29, No. 8, pp. 6289-6296.
    [11] Guo, W., Kirste, R., Bryan, Z., Bryan, I., Gerhold, M., Collazo, R. and Sitar, Z., 2015, “Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: a way towards light extraction efficiency enhancement of III-nitride based light emitting diodes,” J Appl Phys, Vol. 117, No. 11, 113107.
    [12] Joo, D.H., Lee, H.K. and Yu, J.S., 2012, “Light output extraction enhancement in GaN-based green LEDs with periodic AZO subwavelength nanostructure arrays," IEEE Photon Technol Lett, Vol. 24, No. 16, pp. 1381-1383.
    [13] Potter, M.E., Goss, K., Neifeld, M.A. and Ziolkowski, R.W., 2005, “Nanostructure surface relief profiles for high-density optical data storage,” Opt Commun, Vol. 253, No. 1-3, pp. 56-69.
    [14] 第9屆兩岸專利論壇,2016,謝曉光簡報,TIPO協助產業提升專利品質及價值四大目標。
    [15] Jui, C.W., Trappey, A.J.C. and Fu, C.C., 2016, “Method of claim-based technology analysis for strategic innovation management–using TPP-related patents as case examples,” Proceedings of the 2016 International Conference on Innovative Design and Manufacturing (ICIDM 2016), Auckland, Australia.
    [16] Jui, C.W., Trappey, A.J.C. and Fu, C.C., 2016, “Method of claim-based technology analysis for strategic innovation management–using TPP-related patents as case examples,” J Intellect Prop Rights, Vol. 21, No. 4, pp. 243-259.
    [17] 李貴敏、劉偉立,2007,專利制度之車轍同軌–由WIPO 專利整合計畫與美日專利申請高速公路觀察全球專利制度整合趨勢與對台灣之可能影響,智慧財產權月刊,第103 期,第111頁。
    [18] 鄭中人,專利法規釋義,考用出版股份有限公司,2009 年 3 月,頁 2-057.
    [19] 李素華,2011,專利權讓與之給付義務與權利瑕疵擔保-台灣高等法院95年度上字第1032號民事判決,月旦裁判時報,第11期,第47-51頁。
    [20] 陳省三、李昆鴻,2016,企業快速掌握專利分布現況與未來趨勢預測:以LTE-A無線通訊技術為例,產業與管理論壇,第18卷,第3期,第62頁。
    [21] Martino, J.P., 2003, “A review of selected recent advances in technology forecasting,” Technol Forecast Soc Change, Vol. 70, No. 8, pp. 719-733.
    [22] 張瑞芬、張力元、吳俊逸、樊晉源,專利分析與智慧財產管理,台北:華泰文化,初版,2013年1月,第179頁。
    [23] Ashton, W.B. and Sen, R.K., 1988, “Using patent information in technology business planning-I,” Res Technol Manage, Vol. 31, No. 6, pp. 42-46.
    [24] Adelaide, M.A., Maria, S.A., Cicera, H., Jeziel, N. and Flavia, M.L., 2012, “Trends in nanotechnology patents applied to the health sector,” Recent Pat Nanotechnol, Vol. 6, No. 1, pp. 29-43.
    [25] Porter, A.L., Cunningham, S.W. (Eds.), 2005, Tech mining: exploiting new technology for competitive advantage. New Jersey: Wiley.
    [26] Chang, S.B., 2012, “Using patent analysis to establish technological position: two different strategic approaches,” Technol Forecast Soc Change, Vol. 79, No. 1, pp. 3-15.
    [27] Wu, F., Tang, M. and Huang, L., 2010, “Analysis on the technologies' trend of R&D industry based on WIPO patent and SCI documents,” The 2nd International Conference on Information Science and Engineering (ICISE), Hangzhou, China, pp. 117-120.
    [28] Grupp, H. and Schmoch, U., 1999, “Patent statistics in the age of globalization: new legal procedures, new analytical methods, new economics interrelations,” Res Policy, Vol. 28, No. 4, pp. 377-396.
    [29] Suzuki, S.I., 2011, “Introduction to patent map analysis,” Tokyo: Japan Patent Office.
    [30] Jun, S. and Lee, S.J., 2012, “Emerging technology forecasting using new patent information analysis,” Int J Software Eng Appl, Vol. 6, No. 3, pp. 107-114.
    [31] Granstrand, O. (Ed.), 1999, “The economics and management of intellectual property: toward intellectual capitalism,” London: Edward Elgar Publishing Ltd..
    [32] Paci, R., Sassu, A. and Usai, S., 1997, “International patenting and national technological specialization,” Technovation, Vol. 17, No. 1, pp. 25-38.
    [33] Fleisher, C.S. and Bensoussan, B.E., 2002, “Strategic and competitive analysis: methods and techniques for analysing business competition,” Upper Saddle River, New Jersey: Prentice Hall, pp. 347-351.
    [34] Kim, Y.G., Suh, J.H. and Park, S.C., 2008, “Visualization of patent analysis for emerging technology,” Expert Syst Appl, Vol. 34, No. 3, pp. 1804-1812.
    [35] Grilliches, Z., 1990, “Patent statistics as economic indicators: a survey,” J Eco Lit, Vol. 28, No. 4, pp. 1661-1707.
    [36] 陳達仁,專利檢索與分析,臺北市:經濟部智慧財產局,第三版,2009 年,第5頁。
    [37] Trappey, C.V., Trappey A.J.C. and Wu, C.Y., 2010, “Clustering patents using non-exhaustive overlaps,” J Syst Eng Electron, Vol. 19, No. 2, pp. 162-181.
    [38] Lai, K.K. and Wu, S.J., 2005, “Using the patent co-citation approach to establish a new patent classification system,” Info Process Manage, Vol. 41, No. 2, pp. 313-330.
    [39] 吳宜榛,2008,可專利性檢索之檢索技巧研究-以「專利工程師」為例,國立臺灣師範大學圖書資訊學研究所碩士論文,第15頁。
    [40] 陳達仁、黃慕萱,專利資訊與專利檢索,臺北市:文華圖書出版,2002 年。
    [41] Japan Patent Office Asia-Pacific Industrial Property Center, JIII, 2000, Guide book for practical use of “patent map for each technology field.” Tokyo: Japan Patent Office.
    [42] 魯明德,解析專利資訊,第三版,台北,全華圖書股份有限公司,2010,第 374頁。
    [43] 謝明華,1996,專利地圖及其策略性應用研究,科學發展月刊,第24卷,第 11期,第923-931頁。
    [44] Cheng, T.Y. and Wang, M.T., 2013, “The patent-classification technology/function matrix–a systematic method for design around,” J Intellect Prop Rights, Vol. 18, No. 2, pp. 158-167.
    [45] 劉尚志,Patent map–a route to a strategic intelligence of industrial competitiveness,第一屆亞太專利地圖研討會,台北,2003 年10月29日,頁1-1到2-13。
    [46] Hong, S., 2009, “The magic of patent information,” World Intellectual Property Organization (WIPO), via DIALOG, Available from: http://www.wipo.int/sme/en/documents/patent_information_fulltext.html#P8_79 [cited: 29th Jun 2015].
    [47] Liu, C.Y. and Yang, J.C., 2008, “Decoding patent information using patent map,” Data Sci J, Vol. 7, pp. 14-22.
    [48] 黨倩娜,2005,專利分析方法和主要指標,上海情報服務平台,檢自: http://www.istis.sh.cn/list/list.asp?id=2402
    [49] Abbas, A., Zhang, L. and Khan, S.U., 2014, “A literature review on the state-of-the-art in patent analysis,” World Patent Info, Vol.37, pp. 3-13.
    [50] Ghazinoory, S., Ameri, F. and Farnoodi, S., 2012, “An application of the text mining approach to select technology centers of excellence,” Technol Forecast Soc Change, Vol. 80, No. 5, pp. 918-931.
    [51] 曾元顯,專利文字之知識探勘:技術與挑戰,現代資訊組織與檢索研討會,台北,淡江大學,2004年11月19日,第111-123頁。
    [52] Tseng, Y.H., Lin, C.J. and Lin, Y.I., 2007, “Text mining techniques for patent analysis,” Info Process Manage, Vol.43, No. 5, pp. 1216-1247.
    [53] Fattori, M., Pedrazzi, G. and Turra, R., 2003, “Text mining applied to patent mapping: a practical business case,” World Patent Info, Vol. 25, No. 4, pp. 335-342.
    [54] Lent, B., Agrawal, R. and Srikant, R., 1997, “Discovering trends in text databases,” Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, Newport Beach, California, USA.
    [55] Yoon, B. and Park, Y., 2004, “A text-mining-based patent network: analytical tool for high-technology trend,” J High Tech Manage Res, Vol. 15, No. 1, pp. 37-50.
    [56] Berry, M.J.A. and Linoff, G. (Eds.), 1997, “Data mining technique techniques: for marketing, sales and customer support,” New York: John Wiley and Sons Inc., ISBN: 0471179809.
    [57] Salton, G. and McGill, M.J. (Eds.), 1983, “Introduction to modern information retrieval,” New York: McGraw-Hill Book Co..
    [58] Jones, K.S., 1972, “A statistical interpretation of term specificity and its application in retrieval,” J Documentation, Vol. 28, No. 1, pp. 11-21.
    [59] Salton, G. and Buckley, C., 1988, “Term-weighting approaches in automatic text retrieval,” Info Process Manage, Vol. 24, No. 5, pp. 513-523.
    [60] Baeza-Yates, R. and Ribeiro-Neto, B. (Eds.), 1999, “Modern information retrieval,” New York, NY: ACM Press/Addison Wesley.
    [61] Al-Kofahi, K., Tyrrell, A., Vachher, A., Travers, T. and Jackson, P., 2001, “Combining multiple classifiers for text categorization,” Proceedings of the 10th International Conference on Information and Knowledge Management, Atlanta, Georgia, USA, pp. 97-104.
    [62] 楊燕珠、王千豪,2007,基於近似詞彙樣式匹配之主題式文件分群(Thematic Document Clustering Based on Approximate Word Pattern Matching),第13屆海峽兩岸資訊管理發展與策略學術研討會,第388-393頁。
    [63] Chen, T.S., Tsai, T.H., Chen, Y.T., Lin, C.C., Chen, R.C., Li, S.Y. and Chen, H.Y., 2005, “A combined K-means and hierarchical clustering method for improving the clustering efficiency of microarray,” Proceedings of 2005 International Symposium on Intelligent Signal Processing and Communication Systems, pp. 405-408.
    [64] MacQueen, J.B., 1967, “Some methods for classification and analysis of multivariate observations,” Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, pp. 281-297.
    [65] Nazeer, K.A.A. and Sebastian, M.P., 2009, “Improving the accuracy and efficiency of the k-means clustering algorithm,” International Conference on Data Mining and Knowledge Engineering (ICDMKE), Proceedings of the World Congress on Engineering (WCE-2009), London, pp. 308-312.
    [66] U.S. Government Accountability Office (GAO), Intellectual property: assessing factors that affect patent infringement litigation could help improve patent quality, GAO-13-465, Published: Aug 22, 2013. Available from: http://www.gao.gov/products/gao-13-465 [cited: 8th Dec 2017].
    [67] Allison, J.R., Lemley, M.A., Moore, K.A. and Trunkey, R.D., 2003, “Valuable patents,” Geo L J, Vol. 92, pp. 435.
    [68] Thomas, J.R., 2002, “The responsibility of the rulemaker: comparative approaches to patent administration reform,” Berkeley Tech L J, Vol. 17, No. 2, pp. 742.
    [69] In re Hiniker Co., 150 F.3d 1362, 1369, 47 USPQ2d 1523, 1529 (Fed. Cir 1998).
    [70] Morton Int’l, Inc. v. Cardinal Chem. Co., 5 F.3d 1464, 1470, 28 USPQ2d 1190, 1195 (Fed. Cir. 1993).
    [71] Moore, K.A., 2001, “Are district court judges equipped to resolve patent cases?” Harv J Law Technol, Vol. 15, No. 1, pp. 2.
    [72] 芮嘉瑋,2011,從程序保障觀點論技術審查官制度之改革,中原大學財經法律研究所碩士論文,第91頁。
    [73] Göppert-Mayer, M., 1931, “Elementary acts with two quantum jumps,” Ann Phys, Vol. 9, No. 2, pp. 273-294.
    [74] Kaiser, W. and Garrett, C.G.B., 1961, “Two-photon excitation in CaF2:Eu2+,” Phys Rev Lett, Vol. 7, No. 6, pp. 229-231.
    [75] Ovsianikov, A. and Chichkov, B.N., 2012, “Three-dimensional microfabrication by two-photon polymerization technique,” Meth Mol Biol, Vol. 868, pp. 311-325.
    [76] Burmeister, F., Steenhusen, S., Houbertz, R., Zeitner, U.D., Nolte, S. and Tunnermann, A., 2012, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J Laser Appl, Vol. 24, No. 4, 042014.
    [77] Ferreras, Paz, V., Emons, M., Obata, K., Ovsianikov, A., Peterhansel, S., Frenner, K., Reinhardt, C., Chichkov, B., Morgner, U. and Osten, W., 2012, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J Laser Appl, Vol. 24, No. 4, 042004.
    [78] Tan, D., Li, Y., Qi, F., Yang, H., Gong, Q.H., Dong, X.Z. and Duan, X.M., 2007, “Reduction in feature size of two-photon polymerization using SCR500,” Appl Phys Lett, Vol. 90, No. 7, 071106.
    [79] Haske, W., Chen, V.W., Hales, J.M., Dong, W.T., Barlow, S., Marder, S.R. and Perry, J.W., 2007, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Optics Express, Vol. 15, No. 6, pp. 3426-3436.
    [80] 潘恩亞、蒲念文、董玉平和游漢輝等,2005,雙光子吸收光致聚合技術應用於微元件製作之研究,中正嶺學報,第34卷,第1期。
    [81] 黃煒哲、鄭文軍,2013,單光束氦氖雷射於雙丙烯酸酯寫入二維圖形,中山大學光電工程學系碩士論文,第21-22頁。
    [82] Denk, W., Strickler, J.H. and Webb, W.W., 1990, “Two-photon laser scanning fluorescence microscopy,” Science, Vol. 248, No. 4951, pp. 73-76.
    [83] Gu, M., 1996, “Principles of three dimensional imaging in confocal microscopy,” Singapore: World Scientific, pp. 337.
    [84] Sheppard, C.J.R. and Shotton, D.M., 1997, “Confocal laser scanning microscopy,” New York: Springer-Verlag New York Inc., pp. 61-70.
    [85] Maruo, S., Nakamura, O. and Kawata, S., 1997, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt Lett, Vol. 22, No. 2, pp. 132-134.
    [86] Shear, J.B., Xu, C. and Webb, W.W., 1997, “Multiphoton-excited visible emission by serotonin solutions,” Photochem Photobiol, Vol. 65, No. 6, pp. 931-936.
    [87] Kawata, S., Sun, H.B., Tanaka, T. and Takada, K., 2001, “Finer features for functional microdevices,” Nature, Vol. 412, No. 6848, pp. 697-698.
    [88] Zheng, X., Cheng, K., Zhou, X., Lin, J. and Jing, X., 2017, “A method for positioning the focal spot location of two photon polymerization,” AIP ADVANCES, Vol. 7, No. 9, 095318.
    [89] Park, S.H., Lee, S.H., Yang, D.Y., Kong, H.J. and Lee, K.S., 2005, “Sub-regional slicing method to increase three-dimensional nano-fabrication-efficiency in two-photon polymerization,” Appl Phys Lett, Vol. 87, No. 15, 154108.
    [90] 林建宏等,結合飛秒雷射直寫技術與化學修飾方法製作三維表面增強拉曼散射基板,物理雙月刊,第32卷,第3期,2010年6月.
    [91] Xing, J.F., Dong, X.Z., Chen, W.Q., Duan, X.M., Takeyasu, N., Tanaka, T. and Kawata, S., 2007, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl Phys Lett, Vol. 90, No. 13, 131106.
    [92] Xing, J.F., Zheng, M.L., Chen, W.Q., Dong, X.Z., Takeyasu, N., Tanaka, T., Zhao, Z.S., Duan, X.M. and Kawata, S., 2012, “C-2v symmetrical two-photon polymerization initiators with anthracene core: synthesis, optical and initiating properties,” Phys Chem Chem Phys, Vol. 14, No. 45, pp. 15785-15792.
    [93] 楊岳倫,2010,以雙光子光致聚合微製造技術研製光動力微結構,中臺科技大學醫學工程暨材料研究所碩士論文,第6-7頁。
    [94] 林翰良,2013,雙光子聚合微製造技術之三維結構製造品質改進研究,中央大學機械工程學系研究所碩士論文,第17-18頁。
    [95] 林志郎,以雷射直寫製造技術為基礎的3D微列印,科儀新知第197期,2013年12月,第5-13頁。
    [96] Li, X., Zhou, Y., Xue, L. and Huang, L., 2016, “Roadmapping for industrial emergence and innovation gaps to catch-up: a patent-based analysis of OLED industry in China,” Int J Technol Manage, Vol. 72, No. 1-3, pp. 105-143.
    [97] Malinauskas, M., Farsari, M., Piskarskas, A. and Juodkazis, S., 2013, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys Rep, Vol. 533, No. 1, pp. 1-31.
    [98] Ovsianikov, A., Malinauskas, M., Schlie, S., Chichkov, B., Gittard, S., Narayan, R., Lobler, M., Sternberg, K., Schmitz, K.P. and Haverich, A., 2011, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater, Vol. 7, No. 3, pp. 967-974.
    [99] Cumpston, B.H., Ananthavel S.P., Barlow, S., Dyer, D.L., Ehrlich, J.E., Erskine, L.L., Heikal, A.A., Kuebler, S.M., Lee, I.Y.S., McCord-Maughon, D., Qin, J.Q., Rockel, H., Rumi, M., Wu, X.L., Marder, S.R. and Perry, J.W., 1999, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature, Vol. 398, No. 6722, pp. 51-54.
    [100] Serbin, J., Egbert, A., Ostendorf, A., Chichkov, B.N., Houbertz, R., Domann, G., Schulz, J., Cronauer, C., Frohlich, L. and Popall, M., 2003, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt Lett, Vol. 28, No. 5, pp. 301-303.
    [101] Houbertz, R., 2005, “Laser interaction in sol-gel based materials 3-D lithography for photonic applications,” Appl Surf Sci, Vol. 247, No. 1-4, pp. 505.
    [102] Tian, Y., Kwon, H., Shin, Y.C. and King G.B., 2014, “Fabrication and characterization of photonic crystals in photopolymer sz2080 by two-photon polymerization using a femtosecond laser,” J Micro Nano-Manuf, Vol. 2, No. 3, 034501.
    [103] Rybin, M.V., Shishkin, I.I., Samusev, K.B., Belov, P.A., Kivshar, Y.S., Kiyan, R.V., Chichkov, B.N. and Limonov, M.F., 2015, “Band structure of photonic crystals fabricated by two-photon polymerization,” Crystals, Vol. 5, No. 1, pp. 61-73.
    [104] Strickler, J.H. and Webb, W.W., 1991, “Three dimensional optical data storage in refractive media by two-photon point excitation,” Opt Lett, Vol. 16, No. 22, pp. 1780-1782.
    [105] Parthenopoulos, D.A. and Rentzepis, P.M., 1989, “3-dimensional optical storage memory,” Science, Vol. 245, No. 4920, pp. 843-845.
    [106] Sun, H.B., Kawakami, T., Xu, Y., Ye, J.Y., Matuso, S., Misawa, H., Miwa, M. and Kaneko, R., 2000, “Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption,” Opt Lett, Vol. 25, No. 15, pp. 1110-1112.
    [107] Borisov, R.A., Dorojkina, G.N., Koroteev, N.I., Kozenkov, V.M., Magnitskii, S.A., Malakhov, D.V., Tarasishin, A.V. and Zheltikov, A.M., 1998, “Fabrication of three-dimensional periodic microstructures by means of two-photon polymerization,” Appl Phys B, Vol. 67, No. 6, pp. 765-767.
    [108] Bhawalkar, J.D., Kumar, N.D., Zhao, C.F. and Prasad, P.N., 1997, “Two-photon photodynamic therapy,” J Clin Laser Med Surg, Vol. 15, No. 5, pp. 201-204.
    [109] Narayan, R.J., Jin, C., Doraiswamy, A., Mihailescu, I.N., Jelinek, M., Ovsianikov, A., Chichkov, B.N. and Chrisey, D.B., 2005, “Laser Processing of advanced bio-ceramics,” Adv Eng Mater, Vol. 7, No. 12, pp. 1083-1098.
    [110] Suter, M., Zhang, L., Siringil, E.C., Peters, C., Luehmann, T., Ergeneman, O., Peyer, K.E., Nelson, B.J. and Hierold, C., 2013, “Superparamagnetic microrobots: fabrication by two-photon polymerization and biocompatibility,” Biomed Microdevices, Vol. 15, No. 6, pp. 997-1003.
    [111] Marino, A., Barsotti, J., de Vito, G., Filippeschi, C., Mazzolai, B., Piazza, V., Labardi, M., Mattoli, V. and Ciofani, G., 2015, “Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation,” ACS Appl Mater Inter, Vol. 7, No. 46, pp. 25574-25579.
    [112] Accardo, A., Blatché, M.C., Courson, R., Loubinoux, I., Thibault, C., Malaquin, L. and Vieu, C., 2017, “Multiphoton direct laser writing and 3D imaging of polymeric freestanding architectures for cell colonization,” Small, Vol.13, No. 27, 1700621.
    [113] Marino A, Ciofani G, Filippeschi C, Pellegrino, M., Pellegrini, M., Orsini, P., Pasqualetti, M., Mattoli, V. and Mazzolai, B., 2013, “Two-photon polymerization of sub-micrometric patterned surfaces: investigation of cell-substrate interactions and improved differentiation of neuron-like cells,” ACS Appl Mater Interfaces, Vol. 5, No. 24, pp. 13012-13021.
    [114] Nava, M.M., Piuma, A., Figliuzzi, M., Cattaneo, I., Bonandrini, B., Zandrini, T., Cerullo, G., Osellame, R., Remuzzi, A. and Raimondi, M.T., 2016, “Two-photon polymerized ‘nichoid’ substrates maintain function of pluripotent stem cells when expanded under feeder-free conditions,” Stem Cell Res Ther, Vol. 7, No. 1, 132.
    [115] Accardo, A., Blatché, M.C., Courson, R., Loubinoux, I., Vieu, C. and Malaquin, L., 2018, “Two-photon lithography and microscopy of 3D hydrogel scaffolds for neuronal cell growth,” Biomed Phys Eng Express, Vol. 4, No. 2, 027009.
    [116] Accardo, A., Blatché, M.C., Courson, R., Loubinoux, I., Vieu, C. and Malaquin, L., 2018, “Direct laser fabrication of free-standing PEGDA-hydrogel scaffolds for neuronal cell growth: engineering 3D biocompatible microenvironments,” Mater Today, Vol. 21, No. 3, pp. 315-316.
    [117] Nawrot, M., Zinkiewicz, L., Wlodarczyk, B. and Wasylczyk, P., 2013, “Transmission phase gratings fabricated with direct laser writing as color filters in the visible,” Opt Express, Vol. 21, No. 26, pp. 31919-31924.
    [118] Liu, Y.J., Yang, J.Y., Nie, Y.M., Lu, C.H., Huang, E.D., Shin, C.S., Baldeck, P. and Lin, C.L., 2015, “A simple and direct reading flow meter fabricated by two-photon polymerization for microfluidic channel,” Microfluid Nanofluid, Vol. 18, No. 3, pp. 427-431.
    [119] Farsari, M. and Chichkov, B., 2009, “Materials processing: two-photon fabrication,” Nat Photonics, Vol. 3, pp. 450-452.
    [120] Accoto, C., Qualtieri, A., Pisanello, F., Ricciardi, C., Pirri, C.F., De Vittorio, M. and Rizzi, F., 2015, “Two-Photon Polymerization Lithography and Laser Doppler Vibrometry of a SU-8-Based Suspended Microchannel Resonator,” Microelectromech. Syst, Vol. 24, No. 4, pp. 1038-1042.
    [121] Wu, D., Wu, S.Z., Niu, L.G., Chen, Q.D., Wang, R., Song, J.F., Fang, H.H. and Sun, H.B., 2010, “High numerical aperture microlens arrays of close packing,” Appl Phys Lett, Vol. 97, No. 3, 031109.
    [122] Osipov, V., Doskolovich, L.L., Bezus, E.A., Cheng, W., Gaidukeviciute, A. and Chichkov, B., 2012, “Fabrication of three-focal diffractive lenses by two-photon polymerization technique,” Appl Phys A, Vol. 107, No. 3, pp. 525-529.
    [123] Moore, G.E., 1965, “Cramming more components onto integrated circuits,” Electronics, Vol. 38, No. 8, pp. 114-117.
    [124] Mathur, G.N., 2002, “Nanostructured materials-present & future,” Prog Cryst Growth Charact Mater, Vol. 45, No. 1-2, pp. 167-169.
    [125] Sutardja, S., 2014, “Slowing of Moore's law signals the beginning of smart everything,” Proceedings of the 2014 44th European Solid-State Device Research Conference (ESSDERC 2014), Bologna, Italy, New Jersey: IEEE.
    [126] Zhou, X.J., Guo, Y. and Jones, J.D., 2017, “E-beam inspection BVC (bright voltage contrast) verification for 14nm technology: DI: defect inspection and reduction,” 2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), New York, USA, New Jersey: IEEE.
    [127] Fu, C.C., Sun, Y.L., Mikolas, G., Lin, P.T., Chang, E.C. and Huang T.B., 2015, “Laser interference lithography apparatus using fiber as spatial filter and beam expander,” US Patent 9025133B2.
    [128] Rothschild, M., 2005, “Projection optical lithography,” Mater Today, Vol. 8, No. 2, pp. 18-24.
    [129] Xu, J., Zhang, W., Liu, L., Wang, Z., Zhang, J., Song, Z., Weng, Z., Hu, Z., Yue, Y. and Li, D., 2011, “Phase-shift control in two-beam laser interference lithography,” Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, Beijing, China, New York: IEEE 2011, pp. 579-583.
    [130] Young, T., 1802, “The bakerian lecture: on the theory of light and colours,” Phil Trans Royal Soc Lond, Vol. 92, pp. 12-48.
    [131] Young, T., 1804, “The bakerian lecture: experiments and calculations relative to physical optics,” Phil Trans Royal Soc Lond, Vol. 94, pp. 1-16.
    [132] Lloyd, H., 1831, “On a new case of interference of the rays of light,” Trans Royal Irish Acad 1831, Vol. 17, pp. 171-177.
    [133] Wolferen, H.V. and Abelmann, L., 2011, “Laser interference lithography. In: Hennessy TC, Ed. Lithography: principles, processes and materials,” Hauppauge, NY: Nova Science Publishers, ISBN 978-1-61122-123-7, pp. 133-148.
    [134] Coleman, J.J., Bryce, A.C. and Jagadish, C. (Eds.), 2012, “Advances in semiconductor lasers,” semiconductors and semimetals book series, Vol. 86, Cambridge, MA: Academic Press, pp. 59.
    [135] Xie, Q., Hong, M.H., Tan, H.L., Chen, G.X., Shi, L.P. and Chong, T.C., 2008, “Fabrication of nanostructures with laser interference lithography,” J Alloy Compd, Vol. 449, No. 1-2, pp. 261-264.
    [136] de Boor, J., Kim, D.S. and Schmidt, V., 2010, “Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd’s interferometer,” Opt Lett, Vol. 35, No. 20, pp. 3450-3452.
    [137] Walsh, M.E., 2004, “On the design of lithographic interferometers and their application,” PhD dissertation, Boston: Department of Mechanical Engineering and Computer Science, Massachusetts Institute of Technology, pp. 47-49.
    [138] Jang, J.H., Ullal, C.K., Maldovan, M., Gorishnyy, T., Kooi, S., Koh, C.Y. and Thomas, E.L., 2007, “3D micro- and nanostructures via interference lithography,” Adv Funct Mat, Vol. 17, No. 16, pp. 3027-3041.
    [139] Mao, W., Wathuthanthri, I. and Choi, C.W., 2014, “Tunable two-mirror interference lithography system,” US Patent 8681315B2.
    [140] Lei, Y., Wang, Z., Xu, J., Zhang, J.J., Wang, D.P., Hou, Y., Yue, Y. and Li, D.Y., 2012, “Determination of two-dimensional phase shifts in three-beam laser interference patterns,” Proceedings of IEEE International Conference on Manipulation, Manufacturing, and Measurement on the Nanoscale (3M-NANO), Xian, China, pp. 9-13.
    [141] Gao, L., Zhou, W., Wang, Y., Wang, S.Q., Bai, C., Li, S.M., Liu, B., Wang, J.N. and Li, Y.L., 2016, “Fabrication of hydrophobic structures on stent by direct three-beam laser interference lithography,” Optik, Vol. 127, No. 13, pp. 5211-5214.
    [142] Zhang, Z., Dong, L., Ding, Y., Li, L., Weng, Z. and Wang, Z., 2017, “Micro and nano dual-scale structures fabricated by amplitude modulation in multi-beam laser interference lithography,” Opt Express, Vol. 25, No. 23, pp. 29135-29142.
    [143] Wang, D., Wang, Z., Zhang, Z., Yue, Y., Li, D. and Maple, C., 2013, “Effects of polarization on four-beam laser interference lithography,” Appl Phys Lett, Vol. 102, No. 8, 081903.
    [144] Hu, Y.W., Wang, Z.B., Weng, Z.K., Yu, M. and Wang, D.P., 2016, “Bio-inspired hierarchical patterning of silicon by laser interference lithography,” Appl Opt, Vol. 55, No. 12, pp. 3226-3232.
    [145] Xu, J., Wang, Z.B., Zhang, Z., Wang, Z.P. and Weng, Z.K., 2014, “Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography,” J Appl Phys, Vol. 115, No. 20, 203101.
    [146] Savas, T.A., Shah, S.N., Schattenburg, M.L., Carter, J.M. and Smith, H.I., 1995, “Achromatic interferometric lithography for 100 nm-period gratings and grids,” Proceedings of the 39th International Conference on Electron Ion and Photon Beam Technology and Nanofabrication (EIPBN), Scottsdale, AZ, Vol. 13, No. 6, pp. 2732-2735.
    [147] Anderson, E.H., Komatsu, K. and Smith H.I., 1988, “Achromatic holographic lithography in the deep ultraviolet,” J Vac Sci Technol B Microelectron Nanometer Struct, Vol. 6, No. 1, pp. 216-218.
    [148] Park, J.M., Kim, T.G., Constant, K., Ho, K.M., 2011, “Fabrication of submicron metallic grids with interference and phase-mask holography,” J Micro Nanolithogr MEMS MOEMS, Vol. 10, No. 1, pp. 1-5.
    [149] Pelaez, R.J., Ferrero, A., Skeren, M., Bernad, B. and Campos, J., 2017, “Customizing plasmonic diffraction patterns by laser interference,” RSC Adv, Vol. 7, No. 48, pp. 30118-30127.
    [150] Baglin, J.E.E., 2012, “Ion beam nanoscale fabrication and lithography—a review,” Appl Surf Sci, Vol. 258, No. 9, pp. 4103-4111.
    [151] Liu, S., Roeder, G., Aygun, G., Motzek, K., Evanschitzky, P. and Erdmann, A., 2012, “Simulation of 3D inclined/rotated UV lithography and its application to microneedles,” Optik, Vol. 123, No. 10, pp. 928-931.
    [152] Vieu, C., Carcenac, F., Pépin, A., Chen, Y., Mejias, M., Lebib, A., Manin-Ferlazzo, L., Couraud, L. and Launois, H., 2000, “Electron beam lithography: resolution limits and applications,” Appl Surf Sci, Vol. 164, No. 1-4, pp. 111-117.
    [153] Ahn, S., Choi, J., Kim, E., Dong, K.Y., Jeon, H., Ju, B.K. and Lee, K.B., 2011, “Combined laser interference and photolithography patterning of a hybrid mask mold for nanoimprint lithography,” J Nanosci Nanotechnol, Vol. 11, No. 7, pp. 6039-6043.
    [154] Yang, Y.K., Mai, H.Y., Lin, T.H., Dzeng, Y.H. and Fu, C.C., 2017, “Eliminate the vibration defect for laser interference lithography using an optical chopper system,” Proceedings of 2017 Conference on Optical Microlithography XXX, San Jose, CA, Vol. 10147, 101471G.
    [155] 張恩獎,2014,自動化雷射干涉微影設備之開發與其製作之週期性奈米結構的應用,國立清華大學奈米工程與微系統研究所博士論文,第8頁。
    [156] Lin, T.H., Yang, Y.K. and Fu, C.C., 2017, “Integration of multiple theories for the simulation of laser interference lithography processes,” Nanotechnology, Vol. 28, No. 47, 475301.
    [157] Wang, D.P., Wang, Z.B., Zhang, Z., Tue, Y., Li, D.Y. and Maple, C., 2013, “Direct modification of silicon surface by nanosecond laser interference lithography,” Appl Surf Sci, Vol. 282, pp. 67-72.
    [158] Kuiper, S., van Wolferen, H., van Rijn, C., Nijdam, W., Krijnem, G., Elwenspoek, M., 2001, “Fabrication of microsieves with sub-micron pore size by laser interference lithography,” J Micromehcanics Microengineering, Vol. 11, No. 1, pp. 33-37.
    [159] Do, Y.S., Park, J.H., Hwang, B.Y., Lee, S.M., Ju, B.K. and Choi, K.C., 2012, “Plasmonic color filters for large area display devices fabricated by laser interference lithography,” Proceedings of 2012 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, pp. 1-2.
    [160] Cui, L., Wang, G.G., Zhang, H.Y., Han, J.C., Kuang, X.P., Tian, J.L. and Sun, R., 2014, “Fabrication of nanopatterned sapphire substrates by annealing of patterned Al thin films by laser interference lithography,” App Phys A, Vol. 115, No. 1, pp. 159-165.
    [161] Feng, Z.H. and Lau, K.M., 2005, “Enhanced luminescence from GaN-based blue LEDs grown on grooved sapphire substrates,” IEEE Photon Technol Lett, Vol. 17, No. 9, pp. 1812-1814.
    [162] Oh, Y., Lim, J.W., Kim, J.G., Wang, H., Kang, B.H., Park, Y.W., Kim, H., Jang, Y.J., Kim, J., Kim, D.H. and Ju, B.K., 2016, “Plasmonic periodic nanodot arrays via laser interference lithography for organic photovoltaic cells with > 10% efficiency,” ACS Nano, Vol. 10, No. 11, pp. 10143-10151.
    [163] Prodan, L., Euser, T.G., van Wolferen, H.A.G.M., Bostan, C., de Ridder, R.M., Beigang, R., Boller, K.J. and Kuipers, L., 2004, “Large-area two-dimensional silicon photonic crystals for infrared light fabricated with laser interference lithography,” Nanotechnology, Vol. 15, No. 5, pp. 639-642.
    [164] Vogelaar, L., Nijdam, W., van Wolferen, H.A.G.M., de Ridder, R.M., Segerink, F.B., Fluck, E., Kuipers, L. and van Hulst, N.F., 2001, “Large area photonic crystal slabs for visible light with waveguiding defect structures: fabrication with focused ion beam assisted laser interference lithography,” Adv Mater, Vol. 13, No. 20, pp. 1551.
    [165] Xie, Q., Hong, M.H., Tan, H.L., Chen, G.X., Shi, L.P. and Chong, T.C., 2008, “Fabrication of nanostructures with laser interference lithography,” J Alloy Compd, Vol. 449, No. 1-2, pp. 261-264.
    [166] Tseng, K.C., Hong, S.T., Lin, T.H., Chuang, T.H. and Fu, C.C., 2016, “WGP structures patterned by Lloyd's mirror laser interference lithography system integrate into MEMS physical sensor device,” Proceedings of 2016 Conference on Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, San Francisco, CA, Vol. 9759, 97591E.
    [167] Tamulevicius, T., Juodenas, M., Klinavicius, T., Paulauskas, A., Jankauskas, K., Ostreika, A., Zutautas, A. and Tamulevicius, S., 2018, “Dot-matrix hologram rendering algorithm and its validation through direct laser interference patterning,” Sci Rep, Vol. 8, 14245.
    [168] Kim, E., Cho, Y. and Kim, W., 2014, “Dynamic patterns of technological convergence in printed electronics technologies: patent citation network,” Scientometrics, Vol. 98, No. 2, pp. 975-998.
    [169] Jui, C.W., Trappey, A.J.C. and Fu, C.C., 2016, “Strategic analysis of innovative laser interference lithography technology using claim-based patent informatics,” Cogent Eng, Vol. 3, No. 1, pp. 1-17.
    [170] Sepúlveda, J., Paternina, A. and Suarez, A., 2014, “Patent applications as source for measuring technological performance,” Scientometrics, Vol. 98, No. 2, pp. 1385-1395.
    [171] Jui, C.W., Trappey, A.J.C. and Fu C.C., 2018, “Discover patent landscape of two-photon polymerization technology for the production of 3d nano-structure using claim-based approach,” Recent Pat Nanotechnol, Vol. 12, No. 3, doi: 10.2174/1872210512666180817121454.
    [172] Jui, C.W., Trappey, A.J.C. and Fu, C.C., 2018, “Patent review on laser interference lithography technique for producing periodic nanostructure,” Recent Pat Nanotechnol, Vol. 12, No. 3, doi: 10.2174/1872210512666180806141624.
    [173] Denk, W., Strickler, J.P. and Webb, W.W., 1991, “Two-photon laser microscopy,” US Patent US5034613A.
    [174] Weiss, S., Michalet, X. and Lacoste, T.D., 2005, “Ultrahigh resolution multicolor colocalization of single fluorescent probes,” US Patent US6844150B2.
    [175] Kannan, R., Reinhardt, B.A. and Tan, L.S., 2001, “Multi-armed chromophores with very large two-photon absorption cross-sections,” US Patent US6300502B1.
    [176] Norman Noble, Inc. v. NUtech Ventures, IPR2013-00101, Paper No. 14, Institution Decision-Decision Denying Inter Partes Review-37 C.F.R. § 42.108, (PTAB 2013/06/20).
    [177] General Patent Corporation (GPC) website. Available from: (http://www.generalpatent.com/about/gpc-group-companies) [cited: 20th Sep 2017].
    [178] Goodman, S.L. and Campagnola, P., 2001, “Free-form fabricaton using multi-photon excitation,” US Patent US6316153B1.
    [179] Shirk, R.C., Carpenter, B.S., Redinger, D.H. and Schnobrich, S.M., 2015, “Fuel injectors with non-coined three-dimensional nozzle inlet face,” US Patent US20150211461A1.
    [180] Kempe, M., Westphal, P., Grau, W. and von Freymann, G., 2013, “Laser beam machining,” US Patent US8389893B2.
    [181] Thiel, M. and Hermatschweiler, M., 2015, “Method for the production of three-dimensional microstructures,” US Patent US8986563B2.
    [182] Thiel, M. and Fischer, H., 2016, “Method and device for a spatially resolved introduction of an intensity pattern comprising electro-magnetic radiation into a photosensitive substance as well as applications thereof,” US Patent US9302430B2.
    [183] Hoffmann, J., Simon, P., Thiel, M., Hermatschweiler, M. and Fischer, H., 2017, “Method for producing a structure,” US Patent US9798248B2.
    [184] Thiel, M., Reinder, R.R., Niesler, F. and Tanguy, Y., 2018, “Method for producing a three-dimensional structure,” US Patent US9937664B2.
    [185] Reinder, R.R., Tanguy, Y. and Joerg, H., 2016, “Process for producing a three-dimensional structure,” US Patent US20160332365A1.
    [186] Smith, T., Knox, W.H., Ding, L., Jani, D. and Linhardt, J.G., 2014, “Optical hydrogel material with photosensitizer and method for modifying the refractive index,” US Patent US8901190B2.
    [187] Zheng, L. and Young, C.A., 2011, “Hydrogel compatible two-photon initiation system,” US 20110021653A1.
    [188] Shoichet, M., Wosnick, J. and Wylie R., 2014, “Chemically patterned hydrogels, manufacture and use thereof,” US Patent 8629197B2.
    [189] Shoham, S., Marom, A. and Mahto, S.K., 2017, “Optically sensitive cell network,” US Patent 9683989B2.
    [190] Smith, T., Knox, W.H., Ding, L., Jani, D. and Linhardt, J.G., 2015, “Optical hydrogel material with photosensitizer and method for modifying the refractive index,” US Patent 9060847B2.
    [191] Grubbs, R.H., 2015, “Light-triggered shape-changeable hydrogels and their use in optical devices,” US 20150258240A1.
    [192] Mačiulaitis, J., Deveikytė, M., Rekštytė, S., Bratchikov, M., Darinskas, A., Simbelyte, A., Daunoras, G., Laurinaviciene, A., Laurinavicius, A., Gudas, R., Malinauskas, M. and Maciulaitis, R., 2015, “Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography,” Biofabrication, Vol. 7, No. 1, 015015.
    [193] Timashev, P., Kuznetsova, D., Koroleva, A., Prodanets, N., Deiwick, A., Piskun, Y., Bardakova, K., Dzhoyashvili, N., Kostjuk, S., Zagaynova, E., Rochev, Y., Chichkov, B. and Bagratashvili, V., 2016, “Novel biodegradable star-shaped polylactide scaffolds for bone regeneration fabricated by two-photon polymerization,” Nanomedicine, Vol. 11, No. 9, pp. 1041-1053.
    [194] Ciuciu, A.I. and Cywiński, P.J., 2014, “Two-photon polymerization of hydrogels—versatile solutions to fabricate well-defined 3D structures,” RSC Adv, Vol. 4, No. 85, pp. 45504-45516.
    [195] Studenovská, H., Vodička, P., Proks, V., Hlučilová, J., Motlík, J. and Rypáček, F., 2010, “Synthetic poly(amino acid) hydrogels with incorporated cell-adhesion peptides for tissue engineering,” J Tissue Eng Regen Med, Vol. 4, No. 6, pp. 454-463.
    [196] Su, P., Tran, Q.A., Fong, J.J., Eliceiri, K.W., Ogle, B.M. and Campagnola, P.J., 2012, “Mesenchymal stem cell interactions with 3D ECM modules fabricated via multiphoton excited photochemistry,” Biomacromolecules, Vol. 13, No. 9, pp. 2917-2925.
    [197] Lemma, E.D., Sergio, S., Spagnolo, B., Pisanello, M., Algieri, L., Coluccia, M.A., Maffia, M., De Vittorio, M. and Pisanello, F., 2018, “Tunable mechanical properties of stent-like microscaffolds for studying cancer cell recognition of stiffness gradients,” Microelectron Eng, Vol. 190, pp. 11-18.
    [198] Huang, Q.L., Xu, H.L., Li, M.T., Hou, Z.S., Lv, C., Zhan, X.P., Li, H.L., Xia, H., Wang, H.Y. and Sun, H.B., 2018, “Stretchable PEG-DA hydrogel-based whispering-gallery-mode microlaser with humidity responsiveness,” J Lightwave Technol, Vol. 36, No. 3, pp. 819-824.
    [199] Goncalves, F.A.M.M., Fonseca, A.C., Domingos, M., Gloria, A., Serra, A.C. and Coelho, J.F.J., 2017, “The potential of unsaturated polyesters in biomedicine and tissue engineering: synthesis, structure-properties relationships and additive manufacturing,” Prog Polym Sci, Vol. 68, pp. 1-34.
    [200] Zhu, J.M. and Marchant, R.E., 2011, “Design properties of hydrogel tissue-engineering scaffolds,” Expert Rev Med Devices, Vol. 8, No. 5, pp. 607-626.
    [201] Ortuño-Lizarán, I., Vilariño-Feltrer, G., Martínez-Ramos, C., Pradas, M.M. and Vallés-Lluch, A., 2016, “Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits,” Biofabrication, Vol. 8, No. 4, 045011.
    [202] Verhulsel, M., Vignes, M., Descroix, S., Malaquin, L., Vignjevic, D.M. and Viovy, J.L., 2014, “A review of microfabrication and hydrogel engineering for micro-organs on chips,” Biomaterials, Vol. 35, No. 6, pp. 1816-1832.
    [203] Takahashi, H., Shimizu, T., Nakayama, M., Yamato, M. and Okano, T., 2015, “Anisotropic cellular network formation in engineered muscle tissue through the self-organization of neurons and endothelial cells,” Adv Healthc Mater, Vol. 4, No. 3, pp. 356-360.
    [204] Takahashi, H., Itoga, K., Shimizu, T., Yamato, M. and Okano, T., 2016, “Human neural tissue construct fabrication based on scaffold-free tissue engineering,” Adv Healthc Mater, Vol. 5, No. 15, pp. 1931-1938.
    [205] Urrios, A., Parra-Cabrera, C., Bhattacharjee, N., Gonzalez-Suarez, A.M., Rigat-Brugarolas, L.G., Nallapatti, U., Samitier, J., DeForest, C.A., Posas, F., Garcia-Cordero, J.L. and Folch, A., 2016, “3D-printing of transparent bio-microfluidic devices in PEG-DA,” Lab Chip, Vol. 16, No. 12, pp. 2287-2294.
    [206] Gauvin, R., Chen, Y.C., Lee, J.W., Soman, P., Zorlutuna, P., Nichol, J.W., Bae, H., Chen, S.C. and Khademhosseini, A., 2012, “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials, Vol. 33, No. 15, pp. 3824-3834.
    [207] So, P.T.C., Engelward, B., Ragan, T., Bahlman, K., Kim, K.H., Laiho, L.H. and Huang, H., 2017, “Systems and methods for volumetric tissue scanning microscopy,” US Patent 9589173B2.
    [208] Brueck, S.R.J., Zaidi, S. and Chu, A.S., 1995, “Method for fine-line interferometric lithography,” US Patent US5415835A.
    [209] Schattenburg, M. and Everett, P.N., 2005, “Method and system for interference lithography utilizing phase-locked scanning beams,” US Patent US6882477B1.
    [210] Hobbs, D.S., MacLeod, B.D. and Kelsey, A.F., 2001, “Holographic patterning method and tool employing prism coupling,” US Patent US6185019B1.
    [211] Innovation, Leica website. Available from: (http://www.leica-microsystems.com/products/confocal-microscopes/innovation/) [cited: 20th Sep 2017].
    [212] Leica website. Available from: (https://www.leica-microsystems.com/products/) [cited: 20th Sep 2017].
    [213] Company Overview of Nikon Instruments, Inc., Bloomberg. Available from: (https://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapid=6481084) [cited: 9th Nov 2017].
    [214] Company Overview of Olympus America Inc., Bloomberg. Available from: (https://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=681218) [cited: 9th Nov 2017].
    [215] Company Overview of Thorlabs, Inc., Bloomberg. Available from: (https://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=4380523) [cited: 9th Nov 2017].
    [216] Chacko, R.T., Ventura, J., Zhuang, J. and Thayumanavan, S., 2012, “Polymer nanogels: a versatile nanoscopic drug delivery platform,” Adv Drug Deliv Rev, Vol. 64, No. 9, pp. 836-851.
    [217] 現行專利法規資訊-專利法,2017年1月18日修正,檢自經濟部智慧財產局官網https://www.tipo.gov.tw/ct.asp?xItem=634248&ctNode=7822&mp=1&nowPage=1&pagesize=100
    [218] Booth, B.L. and Marchegiano, J.E., 1995, “Optical waveguide devices including dry photohardenable layers,” US Patent US5402514A.
    [219] Alfano, R.R., Ho, P.P. and Wang, L., 1994, “Ultrafast optical imaging of objects in a scattering medium,” US Patent US5371368A.
    [220] Modell, M., DeBaryshe, G. and Hed, A.Z., 1998, “Spectral volume microprobe for analysis of materials,” US Patent US5813987A.
    [221] Alfano, R.R., Cai, W., Liu, F., Lax, M. and Das, B.B., 1998, “Time-resolved diffusion tomographic imaging in highly scattering turbid media,” US Patent US5813988A.
    [222] Sevick-Muraca, E.M. and Paithankar, D.Y., 1999, “Fluorescence imaging system and method,” US Patent US5865754A.
    [223] Nelson, R.S. and Zach, R.D., 1999, “Enhanced high resolution breast imaging device and method utilizing non-ionizing radiation of narrow spectral bandwidth,” US Patent US5999836A.

    QR CODE