簡易檢索 / 詳目顯示

研究生: 張家瑋
Chia-Wei Chang
論文名稱: 以免疫吸附及化學交聯反應法研究後突觸質密區中蛋白質與蛋白質間的交互作用
Studying the protein-protein interactions in the postsynaptic density by immunoabsorption and chemical cross-linking means
指導教授: 張兗君
Yen-Chung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 72
中文關鍵詞: 後突觸質密區蛋白質組織免疫吸附
外文關鍵詞: Postsynaptic density, Protein organization, Immunoabsorption
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自豬腦皮質(porcine brain cortex)中純化出的後突觸質密區(postsynaptic density, 簡稱PSD)為一個大型的蛋白質複合體(protein complex),其內包含了數百種的蛋白質。為了研究像這樣的大型蛋白質複合體內部的蛋白質間交互作用,我們發展了一套方法,在打散PSD的整體結構之餘,還能夠維持部分其原有的局部蛋白質交互作用。利用這樣的PSD樣本以及免疫吸附(immunoabsorption),我們發現PSD-95會與α-, β-subunits of calcium, calmodulin-dependent protein kinase II (CaMKIIα及CaMKIIβ), α-tubulin, β-tubulins, NMDA receptors及Chapsyn-110一起被分離出來,而CaMKIIα則會與α-tubulin、β-tubulin、CaMKIIβ及少量的PSD-95一起被分離出來。將PSD以可切裂的交聯反應劑處理,再將其打散,進行免疫吸附,以對角線電泳(diagonal electrophoresis)分析,則進一步發現α-tubulin與CaMKIIα有直接的交互作用關係。這些結果指示出CaMKIIα、α-tubulin、β-tubulin、CaMKIIβ會在PSD中形成一個次級蛋白質複合體(protein subcomplex),這個蛋白質複合體會在PSD中形成一個核心構造,與其他PSD中的蛋白質,如PSD-95或Chapsyn-110,形成直間或間接的交互作用,組織PSD的整體結構。這份研究同時也指示了一套可用於研究大型複雜蛋白質複合體中的蛋白質間交互作用的方法。


    謝誌 摘要 目錄 壹、 序論…………………………………….………………...................1 貳、 材料與方法………....…………………………………....................5 (一) 藥品……………………………………………………..…….5 (二) PSD的純化……………………………………………...……..6 (三) u-PSD及r-PSD的製備…………………………………...…….9 (四) 連續蔗糖濃度梯度離心……………………….…………..…9 (五) SDS-PAGE…………………………………………………....10 (六) 西方點漬法 (Western blot)……………………………….....11 (七) 對角線電泳(Diagonal electrophoresis)…………………...…12 (八) 免疫吸附 (Immunoabosorption)…………………………....13 (九) 以MALDI-TOF MS鑑定蛋白質身份…………………...….14 (十) 化學交聯反應 (chemical cross-linking)………….................15 (十一) 以Bradford assay進行蛋白質定量……………………....16 (十二) Coomassie Blue染色……………………………………....16 (十三) Imperial protein stain………………………………………17 (十四) 銀染色法………………………………………………….17 (十五) 氯仿/甲醇蛋白質沉澱法 (chloroform/methanol precipitation)………........................18 (十六) 丙酮蛋白質沉澱法 (acetone precipitation)……………...19 (十七) 將anti-CaMKIIα antibody固接於protein G-conjugated magnetic beads上………………………………………...19 參、 結果………………………………………………………………..21 (一) PSD結構的打散……………………………………………...21 (二) 以化學交聯反應法研究蛋白質與蛋白質間的交互作用….22 (三) 以anti-PSD-95 antibodies對u-PSD進行免疫吸附………….25 (四) 以anti-CaMKIIα antibodies對u-PSD進行免疫吸附………..27 (五) 鑑定與PSD-95及CaMKIIα共同免疫吸附出的蛋白質…….28 (六) 以anti-PSD-95 antibodies及anti-CaMKIIα antibodies對經過DTSP處理過的PSD進行免疫吸附………………………...30 (七) 以對角線電泳分析與CaMKIIα有直接交互作用的蛋白質..31 (八) 去除抗體相關蛋白質的污染……………………………….33 肆、 討論………………………..……………………………………....36 (一) 從PSD到u-PSD……………………………………………...36 (二) 透過免疫吸附法看到的u-PSD中蛋白質交互作用………...38 (三) 以對角線電泳鑑定與CaMKIIα有直接交互作用的蛋白質..42 (四) 結語與展望………………………………………………….43 伍、 參考文獻…………………………………………………………..45 陸、 表…………………………………………………………………..52 柒、 圖……………………………………………………......................53 圖 1、以連續蔗糖濃度梯度離心分析PSD、u-PSD及r-PSD….…54 圖 2、以西方點漬法分析以交聯反應劑處理前及處理後的PSD 及u-PSD…………………...………………………………56 圖 3、以SDS-PAGE及西方點漬法分析自免疫吸附實驗中所收集的樣本…………………………………………………..58 圖 4、以MALDI-TOF MS及西方點漬法鑑定與PSD-95或CaMKIIα一同免疫吸附出來的蛋白質………………....61 圖 5、以SDS-PAGE分析由經過DTSP處理的PSD中和未經過DTSP處理的PSD中免疫吸附出的蛋白質……………...64 圖 6、以對角線電泳分析以anti-CaMKIIα antibodies自經過DTSP處理的PSD中免疫吸附出的蛋白質……………………...66 圖 7、以SDS-PAGE及西方點漬法分析固接於protein G magnetic beads上的anti-CaMKIIα antibodies的免疫吸附效率…….68 圖 8、PSD的分子模型……………………………………………71

    Baron, M. K., Boeckers, T. M., Vaida, B., Faham, S. et al. (2006) An architectural framework that may lie at the core of the postsynaptic density. Science 311, 531-535.

    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.

    Brocke, L., Chiang, L. W., Wagner, P. D., Schulman, H. (1999) Functional implications of the subunit composition of neuronal CaM kinase II. J. Biol. Chem. 274, 22713-22722.

    Casadevall, N., Lacombe, C., Muller, O., Gisselbrecht, S. et al. (1991) Multimeric structure of the membrena erythropoietin receptor of murine erythroleukemia cells (Friend Cells). J. Biol. Chem. 266, 16015-16020

    Cheng, H. H., Liu, S. H., Lee, H. J., Lin, Y. S., et al. (2006) The heavy chain of cytoplasmic dynein is a major protein component of the postsynaptic density fraction. J. Neurosci. Res. 84, 244-254.

    Christopherson KS, Hillier BJ, Lim WA, Bredt DS. (1999) PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem. 274, 27467-73.

    Dhavan, R., Greer, P. L., Morabito, M. A., Orlando, L. R. (2002) The cyclin-dependent kinase 5 activators p35 and p39 interact with the α-subunit of Ca2+/calmodulin-dependent protein kinase II and α-actinin-1 in a calcium-dependent manner. J. Neurosci. 22, 7879-7891.

    Dosemeci, A., Tao-Cheng, J. H., Vinade, L., Winters, C. A. et al. (2001) Glutamate-induced transient modification of the postsynaptic density. Proc. Natl. Acad. Sci. U.S.A. 98, 10428-10432.

    Dosemeci, A., Tao-Cheng, J. H., Vinade, L., Jaffe, H. (2006) Preparation of postsynaptic density fraction from hippocampal slices and proteomic analysis. Biochemical and Biophysical Research Communications 339, 687-694.

    Edwards, F. A. (1995) LTP: a structural model to explain the inconsistencies. Trends Neurosci. 18, 250-255.

    Ehlers, M. D. (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231-242.

    Gardoni, F., Caputi, A., Cimino, M., Pastorino, L. (1998) Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B of NMDA receptor in postsynaptic densities. J. Neurochem. 71, 1733-1741

    Gardoni, F., Schrama, L. H., van Dalen, J. J. W., Gispen, W. H. et al. (1999) αCaMKII binding to the C-terminal tail of NMDA receptor subunit NR2A and its modulation by autophosphorylation. FEBS Let. 456, 394-398.

    Gundelfinger, E. D., Boeckers, T. M., Baron, M. K., Bowie, J.U. (2006) A role for zinc in postsynaptic density assembly and plasticity? Trends Biochem. Sci. 31, 366-373.

    Hoelz, A., Nairn, A. C., Kuriyan, J. (2003) Crystal structure of a tetradecameric assembly of the association domain of Ca2+/calmodulin-dependent protein kinase II. Mol. Cell 11, 1241-1251.

    Hunt, C. A, Schenker, L. J., Kennedy, M. B. (1996) PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. J Neurosci. 16, 1380-1388

    Huang, Y. Z., Won, S., Ali, D. W., Wang, C. et al. (2000) Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 26, 443-455.

    Jan, H. H., Chen, I. T., Tsai, Y. Y. Chang, Y. C. (2002) Structural roles of the zinc ions bound to the postsynaptic density. J. Neurochem. 82, 525-534.

    Jordan, B. A., Fernholz, B. D., Boussac, M., Xu, C. et al. (2004) Identification and verification of novel rodent postsynaptic density proteins. Mol. Cell. Proteomics 3, 857-871.

    Kennedy, M. B. (2000) Signal-processing machines at the postsynaptic density. Science 290, 750-754.

    Kem, E. Sheng, M. (2004) PDZ domain proteins of synapses. Nature Rev. 5, 771-781.

    Kim, E., Niethammer, M., Rothschild, A., Jan, Y. N. et al. (1996) Clustering of Shaker-type K+ channels by interaction with a family of membrane associated guanylate kinases. Nature 378, 85-88.

    Kim, E., Cho, K. O., Rothschild, A., Sheng, M. (1996) Heteromultimerization and NMDA receptor-clustering activity of Chapsyn-110, a member of the PSD-95 family of proteins. Neuron 17, 103-113.

    Kolb, S. J., Hudmon, A., Ginsberg, T. R., Waxham, M. N. (1998) Identification of domains essential fro the assembly of calcium/calmodulin-dependent protein kinase II holoenzymes. J. Biol. Chem. 273, 31555-31564.

    Kolodziej, S. J., Hudmon, A., Waxham, M. N., Stoops, J. K., (2000) Three-dimensional reconstructions of calcium/calmodulin-dependent (CaM) kinase IIα and truncated CaM kinase IIα reveal a unique organization for its structural core and functional domains. J. Biol. Chem. 275, 14354-14359.

    Kornau, H. C., Schenker, L. T., Kenneday, M. B., Seeburg, P. H. (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737-1740.

    Lai, S. L., Chiang, S. F., Chen, I. T., Chow, W. Y. et al. (1999) Interprotein disulfide bonds formed during isolation process tighten the structure of the postsynaptic density. J. Neurochem. 73, 2130-2138.

    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.

    Leonard, A. S., Lim, I. A., Hemsworth, D. E., Horne MC. et al. (1999) Calcium/calmodulin-dependent protein kinase II is associated with the N-metnyl-D-aspartate receptor. Proc. Natl. Acad. Sci. U.S.A. 96, 3239-3244.

    Leonard, A. S., Bayer, K. U., Merrill, M. A., Lim, I. A. et al. (2002) Regulation of calcium/calmodulin-dependent protein kinase II docking to N-methyl-D-aspartate receptors by calcium/calmodulin and α-actinin. J. Biol. Chem. 277, 48441-48448.

    Li, K. W., Hornshaw, M. P., Van der Schors, R. C., Watson, R. et al. (2004) Proteomics analysis of rat brain postsynaptic density: implications of the diverse protein functionalgroups for the integration of synaptic physiology. J. Biol. Chem. 279, 987-1002.

    Lisman, J. E., Harris, K. M. (1993) Quantal analysis and synaptic anatomy-integrating two views of hippocampal plasticity. Trends Neurosci. 16, 141-147.

    Lisman, J., Schulman, H. Cline, H. (2002) The molecular basis of CaMKII function in synaptic and behavioral memory. Nat. Rev. Neurosci. 3, 175-190.

    Liu, S. H., Cheng, H. H., Huang, S. Y., Yiu, P. C. et al. (2006) Studying the protein organization of the postsynaptic density by a novel solid-phase- and chemical crosslinking-based technology, Mol. Cel. Proteomics 5, 1019-1032.

    Luscher, C., Nicoll, R. A., Malenka, R. C., Muller, D. (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat. Neurosci. 3, 545-550.

    Marrs, G. S., Green, S. H., Dailey, M. E. (2001) Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nat. Neurosci. 4, 1006-1013.

    Miller, S. G,, Kennedy, M. B. (1985) Distinct forebrain and cerebellar isozymes of type II Ca2+/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction. J Biol Chem. 260, 9039-9046.

    Murthy, V. N., Schikorski, T., Stevens, C. F., Zhu, Y. (2001) Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 673-682.

    Paarmann, I., Spangenberg, O., Lavies, A., Konrad, M. (2002) Formation of complexes between Ca2+/calmodulin and the synapse-associated protein SAP97 requires the SH3 domain-guanylate kinase domain-connecting HOOK region. J. Biol. Chem. 277, 40832-40838.

    Peng, J., Kim, M. J., Cheng, D., Duong, D. M. et al. (2004) Semiquantitative proteomic analysis of rat forebrain postsynapic density fractions by mass spectrometry. J. Biol. Chem. 279, 21003-21011.

    Peters, A., Palay, S. L., Webster, H. D. (1991) The fine structure of the nervous system: neurons and their supporting cells, Synapses, Oxford University Press, New York.

    Petersen, J. D., Chen, X., Vinade, L., Dosemeci, A. et al. (2003) Distribution of postsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase II at the PSD. J. Neurosci. 23, 11270-11278.

    Robison, A. J., Bass, M. A., Jiao, Y., MacMillan, L. B., et al. (2005) Multivalent interactions of calcium/calmodulin-dependent protein kinase II with the postsynaptic density proteins NR2B, Densin-180 and α-actinin-2. J. Biol. Chem. 280, 35329-35336.

    Robison AJ, Bartlett RK, Bass MA, Colbran RJ. (2005) Differential modulation of Ca2+/calmodulin-dependent protein kinase II activity by regulated interactions with N-methyl-D-aspartate receptor NR2B subunits and alpha-actinin. J Biol Chem. 280, 39316-23.

    Qoronfleh MW, Ren L, Emery D, Perr M, Kaboord B. (2003) Use of Immunomatrix Methods to Improve Protein-Protein Interaction Detection. J Biomed Biotechnol. 2003, 291-298.

    Satoh, K., Takeuchi, M., Oda, Y., Deguchi-Tawarada, M. et al. (2002) Identification of activity-regulated proteins in the postsynaptic density fraction. Genes Cells 7, 187-197.

    Schneider C, Newman RA, Sutherland DR, Asser U, Greaves MF. (1982) A one-step purification of membrane proteins using a high efficiency immunomatrix. J Biol Chem. 257, 10766-9.

    Shen, K., Teruel, M. N., Subramanian, K., Meyer, T. (1998) CaMKIIβ functions as an F-actin targeting module that localizes CaMKIIα/β heterooligomers to dendritic spines. Neuron 21, 593-606.

    Shevchenko, A., Wilm, M., Vorm, O., Mann, M. (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850-858.

    Siekevitz, P. (1985) The postsynaptic density: a possible role in long-lasting effects in the central nervous system. Proc. Natl. Acad. Sci. U.S.A. 82, 3494-3498.

    Sun, X. X., Hodge, J. J. L., Nguyen, M., Griffith, L.C. (2004) The eag potassium channel binds and locally activates calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 279, 10206-10214.

    Strack, S., McNeill, R. B., Colbran, R. J. (2000) Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem. 276, 23798-23806.

    Toni, N., Buchs, P. -A., Nikonenko, I., Bron, C. R. et al. (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421-425.

    Toni, N., Buchs, P. -A., Nikonenko, I., Povilaitite, P. et al. (2001) Remodeling of synaptic membranes after induction of long-term potentiation. J. Neurosci. 21, 6245-6251.

    Valtschanoff, J. G., Weinberg, R. J. (2001) Laminar organization of the NMDA receptor complex within the postsynaptic density. J. Neurosci. 21, 1211-1217.

    Walikonis, R. S., Jensen, O. N., Mann, M., Provance Jr, D. W. et al. (2000) Identification of proteins in the postsynaptic density fraction by mass spectrometry. J. Neurosci. 20, 4069-4080.

    Walsh, M. J., Kuruc (1992) N., The postsynaptic density: constituent and associated proteins characterized by electrophoresis, immunoblotting, and peptide sequencing. J. Neurochem. 59, 667-678.

    Wechsler, A., Teichber, V. I. (1998) Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin. EMBO J. 17, 3931-3939.

    Yoshimura, Y., Yamauchi, Y., Shinkawa, T., Taoka, M. et al. (2004) Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography tandem mass spectrometry. J. Neurochem. 88, 759-768.

    Ziff, E. B. (1997) Enlightening the postsynaptic density. Neuron 19, 1163-1174.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE