簡易檢索 / 詳目顯示

研究生: 尤思淳
Yu, Szu Chun
論文名稱: 先進鰭式電晶體之臨界電壓調變與氧空缺鈍化研究
Threshold Voltage Tuning and Oxygen Vacancy Passivation for Advanced FinFET
指導教授: 張廖貴術
Chang-Liao, Kuei Shu
王天戈
Wang, Tien Ko
口試委員: 謝嘉民
Shieh, Jia Min
趙天生
Chao, Tien Sheng
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 102
中文關鍵詞: 鰭式電晶體氧空缺臨界電壓高介電層功函數
外文關鍵詞: FinFET, Oxygen vacancy, Threshold voltage, High-k, Work function
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鰭式電晶體相對於傳統單閘極平面電晶體有更好的閘極控制能力,可使驅動電流增加、漏電流減小。但隨著通道長度的微縮使得以通道摻雜濃度調變臨界電壓的方式面臨瓶頸;氧化層厚度的微縮讓氧空缺使平帶電壓下降的問題浮上檯面。在本論文中,分成三部分來探討金屬與高介電層製程對元件電特性的影響,分別為氮氣電漿處理、ALD沉積時間調變以及ALD沉積溫度調變處理。
    第一部分,在鰭式場效電晶體的金屬閘極後進行不同秒數的電漿氮化處理,改變金屬閘極的功函數,進而改變電晶體的臨界電壓。在多數文獻中有提及,金屬層中氮含量比例愈高, P型電晶體能得到的臨界電壓就愈小。然而實驗結果與預期相反,原因推測為沉積出的金屬層內氮含量比例已達飽和,再增加氮含量會使得功函數些微下降。氮氣電漿處理使P型電晶體操作電流上升約5-6%,N型電晶體操作電流些微下降,與等效氧化層厚度變化所得結果相符合。我們提出兩種可能機制來解釋此現象,為氮氣擴散至高介電層內以及介面層增厚。
    第二部分,使用兩種ALD水氣通氣時間來研究氧空缺效應,較長水氣通氣時間使高介電層內氧原子含量增高,晶相轉變為單斜晶相,相對的氧空缺含量更少。實驗結果可從N型鰭式電晶體臨界電壓上升、P型鰭式電晶體臨界電壓下降的結果獲得證實。雖然等效氧化層厚度因較長ALD水氣時間而上升,但次臨界擺幅、介面陷阱密度與漏電流下降,電晶體可靠度也因而提升。
    第三部分,使用兩種ALD沉積溫度來研究氧空缺效應,在較高溫ALD沉積溫度下,高介電層之晶相會轉變為較穩定單斜晶相,因氧空缺的鈍化,在較高溫ALD沉積溫度下可得到較小的臨界電壓標準差。在不影響操作電流的情況下,等效氧化層厚度因高介電層內較高氧含量而些微上升,次臨界擺幅、介面陷阱密度與漏電流減小,電晶體可靠度提升。


    FinFET devices have higher on current and lower leakage current due to better gate control ability compared to the conventional single gate planar FETs. With the scaling of gate length, threshold voltage tuning by channel doping will be an issue. With the scaling of EOT, flat band voltage roll-off caused by oxygen vacancy needs to be solved. There are three parts in this thesis to dicuss the impacts of high-k/metal gate process on device characteristics, which are plasma nitridation, ALD pulse time and ALD growth temperature modulation.
    In the first part, different time of plasma assisted nitridation is implemented on metal gate to adjust work function and achieve multi-Vt FinFET. It has been reported that threshold voltage in PFinFET decreases with a higher nitrogen concentration in metal gate. However, results in this work are contrary to expectation. It supposes that nitrogen concentration of metal gate is already saturated, and effective work function may be decreased with further nitridation treatment. The on current is increased over 5-6% for PFinFET and slightly decreased for NFinFET, which are consistent with the results of EOT. Two possible mechanisms are proposed to explain electrical characteristics of FINFET, which are nitrogen diffusion into high-k layer and interfacial layer regrowth.
    In the second part, two different H2O pulse time in ALD are implemented to study the oxygen vacancy effect. The crystallization of high-k is transferred into monoclinic phase with higher oxygen content by a longer H2O pulse time. Less oxygen vacancy can be also obtained, which is verified by the increased and decreased threshold voltage for NFinFET and PFinFET, respectively. Sub-threshold swing, Dit, and leakage current are decreased, and good reliability is obtained by longer H2O pulse time in ALD although EOT is slightly increased.
    In the third part, two different deposition temperatures in ALD are implemented to study the oxygen vacancy effect. The crystallization phase of high-k is transferred to more stable monoclinic by a higher deposition temperature in ALD. Smaller standard deviation of threshold voltage can be achieved by a higher deposition temperature in ALD because of the reduced oxygen vacancy. EOT is slightly increased due to the higher oxygen content in high-k, and it doesn’t decrease the on current. Sub-threshold swing, Dit, and leakage current are decreased, and good reliability is obtained as well.

    摘要 I 致謝 V 目錄 VII 表目錄 X 圖目錄 XI 第一章 序論 1 1.1前言 1 1.2尺寸微縮所產生的效應 1 1.3 鰭式電晶體優點 3 1.4 閘極後製 (Gate-last) v.s. 閘極先製 (Gate-first) 4 1.5 臨界電壓調變方式 4 1.6 平帶電壓(Flat band voltage) 6 1.7 平帶電壓下降 (Flat band voltage roll-off) 6 1.8 氧空缺 (Oxygen vacancy) 介紹 6 1.9 氧空缺鈍化 8 1.10 氮化鈦 (TiN) 金屬閘極氮化 9 1.11 閘極引發汲極漏電流 (GIDL) 與介面陷阱之關係 10 1.12 論文架構 11 第二章 元件製程與量測 24 2.1 鰭式電晶體製造流程 24 2.2電性量測 24 2.2.1電容量測 24 2.2.2 電晶體量測 25 第三章 不同時間長度氮氣電漿處理對N型與P型鰭式 電晶體之電特性影響 30 3.1研究動機 31 3.2製程與量測 32 3.3實驗結果與討論 33 3.3.1 不同時間長度氮氣電漿處理對N型與P型鰭式電晶體臨界電壓變化之討論 33 3.3.2 不同時間長度氮氣電漿處理對電容元件之電性分析 34 3.3.3 不同時間長度氮氣電漿處理在N型鰭式電晶體中之電性分析 35 3.3.4不同時間長度氮氣電漿處理在P型鰭式電晶體中之電性分析 36 3.4 結論 37 第四章 調變ALD高介電層前驅物 — 水氣cycle數對 N型與P型鰭式電晶體之電特性影響 54 4.1 研究動機 55 4.2製程與量測 56 4.3 實驗結果與討論 57 4.3.1 調變ALD高介電層前驅物 — 水氣cycle數對P型與N型基板電容之電性分析 57 4.3.2 調變ALD高介電層前驅物 — 水氣cycle數對N型與P型鰭式電晶體之電性分析 58 4.4 結論 60 第五章 調變ALD沉積溫度以減少氧空缺對鰭式電晶體的電特性影響 72 5.1研究動機 73 5.2製程與量測 74 5.3實驗結果與討論 75 5.3.1 調變ALD高介電層沉積溫度對P型與N型基板電容之電性分析 76 5.3.2 調變ALD高介電層沉積溫度對N型與P型鰭式電晶體之電性分析 76 5.3.3 調變ALD沉積高介電層之水氣cycle數與調變ALD沉積高介電層之溫度對於氧空缺鈍化的比較 78 5.4 結論 80 第六章 結論與展望 94 6.1結論 94 6.2未來展望 96 參考文獻 97

    [1] Dieter K. Schrodor, “Semiconductor Material and Device Chracterization”, third edition, 2006
    [2] J. H. Stathis, et al., “Reliability Projection for Ultra-Thin Oxides at Low Voltage”, Electron Devices Meeting (IEDM), 1998 IEEE International,, Vol. 71, p. 167, 1998
    [3] E. P. Raynes, et al., “Method for the measurement of the K22 nematic elastic constant”, App. Phys. Lett., Vol. 82, pp. 13-15, 2003
    [4] Zhihao Yu, et al., “Effect of Fin shape on sub-10nm FinFETs”,J comput electron, 2015
    [5] Brad D. Gaynor and Soha Hassoun, “Fin Shape Impact on FinFET Leakage with Application to Multithreshold and Ultralow-Leakage FinFET Design”, IEEE Transactions on Electron Devices, Vol. 61, pp. 2738-2744, 2014
    [6] L-A. Ragnarsson, et al., “Highly Scalable Bulk FinFET Devices with Multi-VT Options by Conductive Metal Gate Stack Tuning for the 10-nm Node and Beyond”, IEEE VLSI Technology, pp. 1-2, 2014
    [7] C.-H. Lin, et al., “Channel Doping Impact on FinFETs for 22nm and Beyond”, IEEE VLSI Technology, p , 2012
    [8] R. Singanamalla, et al., “On the Impact of TiN Film Thickness Variations on the Effective Work Function of Poly-Si/TiN/SiO2 and Poly-Si/TiN/HfSiON Gate Stacks”, IEEE Electron Device Letters (EDL), Vol. 27, pp. 332-334, 2006
    [9] S. C. Song, et al., “Mechanism of Vfb Roll-off with High Work function Metal Gate and Low Temperature Oxygen Incorporation to Achieve PMOS Band Edge Work function”, Electron Devices Meeting (IEDM), pp. 337-340, 2007
    [10] Takashi Ando, et al., “Origins of Effective Work Function Roll-Off Behavior for High-κ Last Replacement Metal Gate Stacks” IEEE Electron Device Letters (EDL), Vol. 34, pp. 729-731, 2013
    [11] Wen-Han, H., et al, “The Lanthanum oxide capping layer induced flat-band roll-off behaviors in high-k/metal-gate NMOSFETs with 28nm CMOS technology”, Nanoelectronics Conference (INEC), pp. 1-2, 2011
    [12] Peter Broqvist and Alfredo Pasquarello, ”Oxygen vacancy in monoclinic HfO2: A consistent interpretation of trap assisted conduction, direct electron injection, and optical absorption experiments”, Applied Physics Letters, Vol. 89, Iss. 26, 2006
    [13] Chris G. Van de Walle, et al., “First-principles calculations for defects and impurities: Applications to III-nitrides”, Vol. 95, Iss. 8, pp. 3851-3879, 2004
    [14] G. Makov, et al., “Periodic boundary conditions in ab initio calculations” Physical Review B, Vol. 51, Iss. 7, pp. 4014-4022, 1995
    [15] G. Bersuker, et al., ” Mechanism of charge trapping reduction in scaled high-k gate stacks”, NATO Science Series, II: Mathematics, Physics and Chemistry, Vol. 220, p. 227, 2006
    [16] J. Mitard, et al., “Characterization and modeling of defects in high-k layers through fast electrical transient measurements”, NATO Science Series, II: Mathematics, Physics and Chemistry, Vol. 220, p. 73, 2006.
    [17] Amit Ranjan Trivedi, et al., “A Simulation Study of Oxygen Vacancy-Induced Variability in HfO2/Metal Gated SOI FinFET”, IEEE Transactions on Electron Devices (TED), Vol. 61, No. 5, pp. 1262-1269, 2014
    [18] Jae Hyuck Jang, et al., “Investigation of Oxygen-Related Defects and the Electrical Properties of Atomic Layer Deposited HfO2 Films Using Electron Energy-Loss Spectroscopy”, App. Phys. Lett., Vol. 109, 2011
    [19] Katrina A. Morgan, et al., “The Effect of Atomic Layer Deposition Temperature on Switching Properties of HfOx Resistive RAM Devices”, IEEE International Symposium on Circuits and Systems (ISCAS), pp. 432-435, 2014
    [20] Keping Han, et al., “Metal Gate Work Function Modulation by Ion Implantation for Multiple Threshold Voltage FinFET Devices” International Workshop on Junction Technology (IWJT), pp. 104-106, 2013
    [21] Keping Han, et al., “FinFET Multi-Vt Tuning with Metal Gate Work Function Modulation by Plasma Doping”, International Workshop on Junction Technology (IWJT), pp. 1-3, 2014
    [22] L.-Å. Ragnarsson, et al., “Highly Scalable Bulk FinFET Devices with Multi-Vt Options by Conductive Metal Gate Stack Tuning for the 10-nm Node and Beyond”, IEEE VLSI Technology, pp. 1-2, 2014
    [23] Yongxun Liu, et al., “Investigation of the TiN Gate Electrode with Tunable Work Function and Its Application for FinFET Fabrication”, IEEE Transactions on Nanotechnology, Vol. 5, No. 6, pp. 723-730, 2006
    [24] Hoffmann. T, et al., “GIDL (Gate induced drain leakage) and parasitic schottky barrier leakage elimination in aggressively scaled HfO2/TiN FinFET devices”, IEEE Electron Devices Meeting (IEDM), pp. 725-728, 2005
    [25] Chuan-Hsi Liu and Jin-Lai Chen, Semiconductor Device Physics and Process: Theory & Practice. p. 235.
    [26] E. Cartier, et al., “Passivation and Depassivation of Silicon Dangling Bonds at the Si/SiO2 Interface by Atomic Hydrogen,” Appl. Phys. Lett., Vol. 63, pp. 1510–1512, 1994

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE