研究生: |
鍾明翰 |
---|---|
論文名稱: |
以三聚磷酸離子交聯聚乙二醇接枝幾丁聚醣共聚物做為傷口修復材料之研究 The study of PEG-Chitosan ionic cross-linked with triphosphate as wound healing material |
指導教授: | 朱一民 |
口試委員: |
鍾次文
魏毓宏 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 幾丁聚醣 、三聚磷酸 、傷口敷料 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
幾丁聚醣(Chitosan)為具有良好生物相容性、生物可降解性的天然高分子,其止血、抗菌的特質適合做為傷口敷料。而聚乙二醇(Poly(ethylene glycol), PEG )為FDA認可的生醫材料,是一具有高度親水性的合成高分子。聚磷酸除了具有抗菌及持水等性質,還可做為離子交聯劑來穩固生醫高分子的結構。
在本研究中,利用mPEG加以改質修飾chitosan,以增加chitosan的親水性,並以冷凍乾燥法製備出海綿狀薄膜,再與三聚磷酸(triphosphate, TPP) 離子交聯形成一水膠體薄膜做為濕潤型敷料。
經過mPEG改質後的chitosan (mPEG-Chit),其結晶結構被破壞而導致熱穩定性變差。但經TPP離子交聯後所製備出的mPEG-Chit薄膜,其親水性、含水率、膨潤率皆有所提升,並且在15天內都能保持穩定的中性狀態。從SEM的結果顯示,mPEG-Chit薄膜在經TPP交聯後其表面結構變得較不規則且孔洞有縮小的現象。另外mPEG-Chit其生物相容性較chitosan更為良好,並在老鼠傷口修復實驗中,未發現發炎或過敏反應,且癒合後的新生膠原蛋白纖維組織排列更為整齊,其中又以經17.8%TPP交聯之mPEG-Chit 2水膠體敷料有最佳的復原效果。綜合以上實驗結果得知,mPEG-Chit經TPP交聯的水膠體敷料擁有應用在幫助傷口修復的潛力。
1 宋信文 梁晃千, "組織工程," 科學發展 362期, 6-11 (2003).
2 Clemson, "Definition of the world biomaterial. In:Biomaterials ABf,ed.," The 6th Annal Intermalionel Biomaterial Symposium, 20-24 (1974).
3 黃穎斐, "生醫敷料及人工皮膚," 科學發展 380期, 24-29 (2004).
4 James R. Roberts, Clinical Procedures in Emergency Medicine, 5th ed. (2009).
5 J. R. Hanna and J. A. Giacopelli, "A review of wound healing and wound dressing products," J Foot Ankle Surg 36 (1), 2-14; discussion 79 (1997).
6 P. A. Falcone, Caldwell , M. D., "Wound metabolism," Clin. Plast. Surg . 443-450 (1990).
7 D. T. Cromack, Porras-Reyes, B., Mustoe, T., "Current concepts in wound healing: growth factor and macrophage interaction," Trauma, 129-130 (1990).
8 R A. F. Clark, "Regulation of fibroplasia in cutaneous wound repair," Am. J. Med. Sci., 42-47 (1993).
9 Walter S . Krawczyk, "A pattern of epidermal cell migration during wound healing," The Journal of Cell Biology, 247-263 (1971).
10 Jerris R. Hedges James R. Roberts, Clinical Procedures in Emergency Medicine, 5th ed. (2009).
11 T. K. Hunt, "Basic principles of wound healing," Trauma, 122-123 (1990).
12 陳澄河, "蝦蟹殼傳奇," 科學期刊 369期, 62-67 (2003).
13 Majeti N.V. Ravi Kumar, "A review of chitin and chitosan applications," Reactive & Functional Polymers 46, 1–27 (2000).
14 L. C. Keong and A. S. Halim, "In vitro models in biocompatibility assessment for biomedical-grade chitosan derivatives in wound management," Int J Mol Sci 10 (3), 1300-1313 (2009).
15 莊仲揚 陳俊男, "幾丁聚醣於生醫產業上的應用," 化工資訊與商情第38期 (2006).
16 R. A. A. Muzzarelli, "Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone," Carbohydrate Polymers 76 (2), 167-182 (2009).
17 V. M. Ramos, N. M. Rodriguez, I. Henning, M. F. Diaz, M. P. Monachesi, M. S. Rodriguez, A. Abarrategi, V. Correas-Magana, J. L. Lopez-Lacomba, and E. Agullo, "Poly(ethylene glycol)-crosslinked N-methylene phosphonic chitosan. Preparation and characterization," Carbohydrate Polymers 64 (2), 328-336 (2006).
18 Y. I. Jeong, D. G. Kim, M. K. Jang, and J. W. Nah, "Preparation and spectroscopic characterization of methoxy poly(ethylene glycol)-grafted water-soluble chitosan," Carbohydrate Research 343 (2), 282-289 (2008).
19 E.C. Struck J.M. Harris, M.G. Case, M.S., "Synthesis and characterization of Poly(Ethylene Glycol) derivatives," J. Poly. Part A: Polym. Chem., 341-352 (1984).
20 N. Bhattarai, H. R. Ramay, J. Gunn, F. A. Matsen, and M. Q. Zhang, "PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release," Journal of Controlled Release 103 (3), 609-624 (2005).
21 Hidetoshi Nishizawa, Tatsuro Ouchi, Yuichi Ohya, "Aggregation phenomenon of PEG-grafted chitosan in aqueous solution," Polymer, 5171-5175 (1998).
22 S. R. Mao, X. T. Shuai, F. Unger, M. Wittmar, X. L. Xie, and T. Kissel, "Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers," Biomaterials 26 (32), 6343-6356 (2005).
23 J. Fangkangwanwong, M. Akashi, T. Kida, and S. Chirachanchai, "One-pot synthesis in aqueous system for water-soluble chitosan-graft-poly(ethylene glycol) methyl ether," Biopolymers 82 (6), 580-586 (2006).
24 J. Fangkangwanwong, M. Akashi, T. Kida, and S. Chirachanchai, "Chitosan-hydroxybenzotriazole aqueous solution: A novel water-based system for chitosan functionalization," Macromolecular Rapid Communications 27 (13), 1039-1046 (2006).
25 N. N. Rao, M. R. Gomez-Garcia, and A. Kornberg, "Inorganic polyphosphate: essential for growth and survival," Annu Rev Biochem 78, 605-647 (2009).
26 F. M. Harold, "Inorganic polyphosphates in biology: structure, metabolism, and function," Bacteriol Rev 30 (4), 772-794 (1966).
27 G. J. J. Kortstee and M. C. M. van Loosdrecht, Inorganic Polyphosphates. (Inorganic Polyphosphates.).
28 Shin-shing Shyu, Fwu-long Mi, Sung-tao Lee, Tsung-bi Wong, "Kinetic Study of Chitosan-Tripolyphosphate ComplexReaction and Acid-Resistive Properties of theChitosan-Tripolyphosphate Gel Beads Preparedby in-Liquid Curing Method," Journal of Polymer Science: Part B: Polymer Physics, Vol. 37, 1551–1564 (1999).
29 George D. Winter and John T. Scales, "Effect of Air Drying and Dressings on the Surface of a Wound," Nature 197 (4862), 91-92 (1963).