簡易檢索 / 詳目顯示

研究生: 伊姆蘭
Khan, Md Imran
論文名稱: 以核磁共振研究S100蛋白質、RAGE V領域、Lysozyme與Tranilast之間的蛋白質相互作用
NMR Study of Protein-Protein Interactions Amongst S100 Proteins, RAGE V Domain, Lysozyme and Tranilast
指導教授: 余靖
YU, CHIN
口試委員: 蘇士哲
SU, SHIH-CHE
陳金榜
Chen, Chinpan
鄒德里
Tzou, Der-Lii M
徐尚德
HSU, SHANG-TE
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 150
中文關鍵詞: RAGE V DomainLysozymeS100 proteinNMRHADDOCK
外文關鍵詞: RAGE V Domain, Lysozyme, S100 protein, NMR, HADDOCK
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究,我們整合了功能及分子階層的資訊,研究溶菌酶、S100蛋白質以及曲尼司特(Tranilast) 其蛋白質-蛋白質/蛋白質-配體之間的交互作用形成的巨分子複合物,其改變與下游訊號傳遞及細胞增殖相關,影響多種人類疾病。S100蛋白質與其目標蛋白質的交互作用以及結合後的特性依然不清楚。S100蛋白質-蛋白質複合物在弱的交互作用情況下,在藥理研究上對於鑑定與選擇潛力的標靶將擁有直接的影響。我們選擇了S100A1、S100A6及S100B蛋白質(其屬於S100蛋白質) 、 溶菌酶、以及Tranilast來進行研究。
    第二章我們簡短的報告與鈣離子結合的人類S100A1蛋白質及S100B蛋白質的生物功能,其皆屬於S100蛋白家族的成員。當鈣離子與S100A1及S100B的EF-hand motifs結合後成為發炎過程中的中間調節者。最終糖化蛋白受體 (Receptors for advanced glycation end products, RAGE) 已知道有五個不同的結構域(domains):變異(V)區,兩個不變(C1、C2) 區,跨膜區以及膜內區。大部分的S100蛋白,特別是S100A1會以RAGE V domain為標靶結合。目前已知S100A1會結合在特定的疏水區域表面,並且會增進細胞增殖、訊息傳遞、細胞生長以及腫瘤生成。為了瞭解RAGE V domain與S100A1的交互作用,我們透過NMR(核磁共振)方法,利用2D NMR 1H-15N HSQC,滴定S100A1至S100B (以及滴定S100B至S100A1) ,結果顯示S100A可以結合S100B。
    根據NMR滴定實驗的結果,我們利用HADDOCK (High Ambiguity Driven biomolecular DOCKing) 程式模擬兩個二元複合物:S100A1-RAGE V domain 以及 S100A1-S100B。比較這兩個複合物,我們清楚觀察到S100A1對於RAGE V domain以及對於S100B擁有相似的結合表面。利用PyMOL軟體將此兩個複合物結構重疊,發現S100B擋住了S100A1-RAGE V domain的結合面。我們進一步利用生物細胞增殖測定實驗(WST-1) 確認此擋住的區域,實驗結果支持我們的假設。此結果可能在神經退化性疾病或癌症治療中對新蛋白的改進帶來益處。
    在第三章,我們利用NMR與分子模型(HADDOCK) 展現了複合物的結構,我們探討了溶菌酶- S100A6複合物的結構。結果顯示溶菌酶是一個抗增生作用劑,可以阻斷S100A6 與 RAGE V domain的交互作用面,抑制了細胞訊息傳遞及增生。我們也發現溶菌酶與Tranilast [N-(3, 4-dimethoxy cinnamoyl) anthranilic acid] 的交互作用,Tranilast是一種抗過敏藥物,其顯著的影響溶菌酶- S100A6複合物與S100A6-RAGE V-domain複合物的形成,過程中Tranilast阻斷了溶菌酶- S100A6複合物的交互作用面,而溶菌酶- S100A6會增進細胞訊息傳遞與增生。最後,我們利用WST-1細胞增殖測定實驗去觀察活性的抑制與促進,結果顯示,溶菌酶抑制細胞增殖 (阻斷S100A6-RAGE V-domain) 但可能透過Tranilast與溶菌酶結合而恢復活性。
    結論,這些研究揭露了蛋白質-蛋白質以及蛋白質-藥物間的交互作用力,對於設計新療法於細胞增殖相關疾病(如癌症)是至關重要的。


    In this thesis, we have integrated the functional and molecular information of lysozyme, S100 protein and tranilast, protein-protein/ protein-ligand interactions, these information are used for understanding the macro-molecular complex formation, and resultant, changes associated in the downstream signaling cascade, cell proliferation leading to the various disease for human health. Interaction of the S100 protein and its behavior after binding to its target protein remains unclear. In this case the weak interaction between S100 protein-protein complexes will have direct implications in pharmaceutical research to identify and select the potential targets. We have selected S100A1, S100A6 and S100B proteins belong to S100 protein, and lysozyme as well as tranilast molecule to investigate the biological functions.
    The Ca2+ binding human S100A1 and S100B protein belonging to a member of the S100 protein family, are substantial intermediators for inflammation when Ca2+ attaches to its EF-hand motifs. Receptors for advanced glycation end products (RAGE) are known to have five different domains: variable (V) domains, two constant (C1, C2) domain, transmembrane and the cytoplasmic domain. Most of the S100 protein, specially S100A1 targets the RAGE V domain to interact. S100A1 is known to bind to hydrophobic region of RAGE V domain and therefore enhance the cell proliferation, signaling transduction cascades and cell growth and tumorigenesis. To find out the interaction between RAGE V domain and S100A1, we utilized NMR (nuclear magnetic resonance) spectroscopy method. Our investigation is found that the S100A1 protein could interact and bind to the S100B protein via 2D NMR 1H-15N HSQC titrations of S100A1 against S100B and vice versa. On the basis of the NMR titration consequences, we utilized the HADDOCK (High ambiguity ariven biomolecular DOCKing) program to generate the two binary complex: S100A1-RAGE V domain and S100A1-S100B. From these two complexes, we clearly observed that S100A1 have a similar binding interface with RAGE V domain and S100B protein. Using PyMOL program we overlapped these two complex where S100B protein aligns between S100A1 and RAGE V domain which blocks the binding interface of S100A1-RAGE V domain complex. We also confirmed this blocking by cell proliferation assay WST-1. This information could possibly be beneficial for new protein improvement for neurodegenerative disease and cancer treatment.
    In chapter III, we educidted the structure of a molecular complex using NMR and molecular modelling (HADDOCK), we have studied the structure of the lysozyme-S100A6 complex. We found lysozyme as an anti-proliferative agent to block the interface of the S100A6 and RAGE V domain, which results in the inhibition of signal transduction and cell proliferation. We also found the interaction of lysozyme with the tranilast [N-(3, 4-dimethoxy cinnamoyl) anthranilic acid], an antiallergic drug which has the dramatic influence on lysozyme-S100A6 and S100A6-RAGE V domain complex formation, where tranilast blocks the interaction between lysozyme-S100A6 complex which enhances the signal transduction and cell proliferation. Finally, we utilized the WST-1 cell proliferation assay to observed the inhibition and enhancement activities of these protein. From this data, we have found out that lysozyme, most believably by blocking the interaction between S100A6 and RAGE V domain, inhibits cell proliferation while tranilast may reverse this effect by binding to lysozyme.
    In conclusion, we demonstrated that the protein-protein and protein-drug interactions, are of most importance for understanding the unclear interactions designing new therapies to treat diseases and possibly such as cancers.

    Table of Contents 摘要(Abstract in Chinese)…………………………………………..……..…...…..I Abstract…………………………………..……………………………..…..……......III Acknowledgement…………………………………………..……………..………...VI Abbreviations…………………………………………………………..………..…VIII Table of Contents……………………………………………....………..…..……….X List of figure…………………………………………………………..…..…....…..XIV Chapter I: Introduction 1.1. Introduction……………………………….…..………………………............2 1.2. Protein export……………………………………..…………………………..4 1.3. Role of the signal peptide in protein secretion……...……….......….………...6 1.4. RAGE general………………………………...………………………………9 1.5. The extracellular compartment of RAGE…………..…….…………..…...…11 1.6. RAGE targeted ligands……………………………………………….…..….13 1.7. Biological functions of S100 proteins……………………………….…........14 1.8. Lysozyme………………………………………………………….……........17 1.9. Tranilast………………………………………………………………………19 1.10. Mechanistic information of RAGE signaling…….…..………….………...….19 1.11. Protein-Ligand Interactions……………………………………..……..…..…20 1.12. NMR spectroscopic analysis of Protein-Ligand interactions……….……..….23 Chapter II S100B as an antagonist to block the interaction between S100A1 and the RAGE V domain 2.1. Introduction………………………..……………………………..………..27 2.1.1. S100A1 protein……………………………………………………………...27 2.1.2. RAGE………………………………………………………………...……..28 2.1.3. S100B…………………………………………………………………...…..30 2.1.4. Objectives of the research………………………………………………..…31 2.2. Materials and methods……………………………………...……......…...32 2.2.1. Materials……………………………………….……….………….……......32 2.2.2. Expression and purification of S100A1 protein………………………….....33 2.2.3. Expression and purification of the RAGE V domain...….. .………..……....38 2.2.4. Expression and purification of S100B protein………………………....…...41 2.2.5. 2D NMR 1H-15N HSQC titration experiments………………………..…….45 2.2.6. Biomolecular docking (HADDOCK)………………………………….…...46 2.2.7. WST-1 assay analysis……………………………..………………………..49 2.3. Results and discussion………………………….…….……………………50 2.3.1. The-binding interface of S100A1 and V domain……………………………50 2.3.2. The binding interface of the RAGE V domain and S100A1………………...56 2.3.3. Structural of S100A1-RAGE V domain complex……………………….…..60 2.3.4. The binding interface of S100A1 and S100B………………….…….………63 2.3.5. The binding interface of S100B and S100A1………………..………………67 2.3.6. Structural model of S100A1-S100B complex………………………….........71 2.3.7. Determination of the dissociation constant of the S100A1-RAGE V domain complex……………………………………………………………….……..75 2.3.8. Fluorescence method to determine the dissociation constant (Kd) of the S100A1-S100B complex…………………………….……….…..……….…77 2.3.9. Functional assay……………………………………………………………..79 2.4. Conclusion…….……..…………………...……………………….………..82 Chapter III Lysozyme as the anti-proliferative agent to block the interaction between S100A6 and the RAGE V domain 3.1. Introduction…………………...……………………………...…..…...……..88 3.1.1. Lysozyme…………………………………………………………….………88 3.1.2. S100A6……………………………………………………………….……...89 3.1.1. Objectives of this research…………………………………………….…….90 3.2. Materials and Methods……………………….…………………….………91 3.2.1. Materials………………….……………………………………………..........91 3.2.2. Expression and purification of lysozyme …………………...…………….…91 3.2.3. Expression and purification of mS100A6.………..….……………....………95 3.2.4. 2D NMR 1H -15N HSQC NMR titration……………………………….….….99 3.2.5. Molecular docking of lysozyme with mS100A6 and tranilast…….….......…100 3.2.6. Measurement of dissociation constant (Kd) - fluorescence method……….…100 3.2.7. WST1 assay………………………………………………………....….……101 3.3. Results and Discussion………………………………………….…….….…102 3.3.1. Determination of interacting site of labelled lysozyme with mS100A6…..…102 3.3.2. Determination of interacting site of labelled mS100A6 with lysozyme……...105 3.3.3. Docking study of lysozyme with mS100A6…………………………….……108 3.3.4. Determination of binding site of labelled lysozyme with tranilast…………..111 3.3.5. Docking study of lysozyme with tranilast………………….……….………..113 3.3.6. Kd of the lysozyme-mS100A6 and lysozyme-tranilast complexes…..….…...116 3.3.7. The proliferation of SW480 cancer cells…………………………………..…118 3.4. Conclusion………………..……………………………………………….…120 References…………………………………………………………….…...……….123 List of figures Chapter - I Figure 1.1. Presentation of the expression of protein in anatomy of the human cell…...3 Figure 1.2. Secretion pathways of the protein synthesized in the human cell ………..4 Figure 1.3. RAGE induced fundamental biological functions and diseases……….....10 Figure 1.4. RAGE contains three components extracellular domain……..……….....12 Figure 1.5. RAGE targeted proteins and their possible pathways during signaling....14 Figure 1.6. S100 monomer comprised of two EF-hand with calcium binding……....16 Figure 1.7. Proposed RAGE signaling triggered by S100 proteins…..……………...20 Chapter - II Figure 2.1. Human S100A1 clone construct. (A) The map of pET-20b (+)..………..33 Figure 2.2. (A) FPLC, Q column purification profile data of S100A1..……………...34 Figure 2.3. (A) FPLC, HIC column purification profile data of S100A1..…….……...36 Figure 2.4. (A) HPLC profile of S100A1 and protein band are shown..….……….…37 Figure 2.5. RAGE V domain clone construct. (A) The map of pET-32b (+)…………39 Figure 2.6. (A) SDS PAGE showing the protein band of Nickel column……..….......40 Figure 2.7. (A) S100B clone construction, the map of pET-28b (+)…….…………..42 Figure 2.8. (A) FPLC, Q column profile of S100B and elute are shown on..………..43 Figure 2.9. (A) HPLC data, peak 1 shown on SDS PAGE of S100B….………….....44 Figure 2.10. (A) 2D NMR HSQC assignment of S100A1 protein…………….…51-52 Figure 2.11. (A) Bar plot showing the chemical shift variations in ………………….54 Figure 2.12. (A) The 2D NMR HSQC assignment of RAGE V domain………...56-58 Figure 2.13. (A) Ribbon diagram of the S100A1-V domain complex…….…….61-62 Figure 2.14. (A) Overlapped NMR HSQC spectra of 15N-S100A1…….……..…64-66 Figure 2.15. (A)The 2D NMR HSQC assignment of S100B protein.…...…….....68-70 Figure 2.16. (A) Ribbon diagram of the S100A1-S100B complex.………………73-74 Figure 2.17. (A) Bar graph of the selected residues observed in……………..………76 Figure 2.18. (A) Emission spectra of S100A1 fluorescence ……………….………..78 Figure 2.19. Analysis of WST-1 assays. A. SW-480 cells were treated……………..80 Figure 2.20. Hypothetical mechanism of the S100A1-RAGE signaling ….……...…83 Figure 2.21. (A) Superimposition of the complex between S100A1 ….………...…..84 Chapter - III Figure 3.1. Lysozyme clone construct. (A) The map of pET-11a………………...…92 Figure 3.2. (A) Purification of lysozyme by CM Sepharose……………………...94-95 Figure 3.3. (A) Purification profile of mS100A6 by Q-Sepharose column..…….96-97 Figure 3.4. Purification profile of mS100A6 Phenyl-Sepharose..………..………….97 Figure 3.5. (A)The purification profile of mS100A6 by HPLC……………….…….98 Figure 3.6. (A) The 2D NMR HSQC assignment of lysozyme protein at……..102-104 Figure 3.7. (A) 2D NMR HSQC spectra of mS100A6 showing the.…………..106-107 Figure 3.8. Haddock calculated parameter of the lysozyme-mS100A6…………….109 Figure 3.9. (A) Representation of the 3D ribbon diagram of the modelled……109-110 Figure 3.10. (A) Overlapped HSQC spectra of 15N-labeled lysozyme…………112-113 Figure 3.11. (A) Haddock calculated parameter of the lysozyme…………...…114-115 Figure 3.12. (A) The structural formula of tranilast. (B) 3D structure……………..116 Figure 3.13. (A) Titration curve showing decreasing fluorescence…………………117 Figure 3.14. The WST1 assay. The bars represent the fold change in……………..119 Figure 3.15. (A) Structure of mS100A6-RAGE V domain complex………………121

    1. Mohan SK, Gupta AA, Yu C. Interaction of the S100A6 mutant (C3S) with the V domain of the receptor for advanced glycation end products (RAGE). Biochem Biophys Res Commun. 2013;434: 328-333.
    2. Blobel G. Unidirectional and bidirectional protein traffic across membranes. Cold Spring Harbor Symposia on Quantitative Biology. 1995.
    3. Prudovsky I, Bagala C, Tarantini F, Mandinova A, Soldi R, Bellum S, et al. The intracellular translocation of the components of the fibroblast growth factor 1 release complex precedes their assembly prior to export. J Cell Biol. 2002.
    4. Nickel W. The mystery of nonclassical protein secretion: A current view on cargo proteins and potential export routes. European Journal of Biochemistry. 2003.
    5. Mohan SK, Rani SG, Yu C. The heterohexameric complex structure, a component in the non-classical pathway for fibroblast growth factor 1 (FGF1) secretion. J Biol Chem. 2010.
    6. Rapoport TA, Jungnickel B, Kutay U. Protein Transport Across the Eukaryotic Endoplasmic Reticulum and Bacterial Inner Membranes. Annu Rev Biochem. 1996.
    7. Kuchler K, Thorner J. Secretion of peptides and proteins lacking hydrophobic signal sequences: The role of adenosine triphosphate-driven membrane translocators. Endocr Rev. 1992.
    8. Muesch a, Hartmann E, Rohde K, Rapoport T a. A novel pathway for secretory proteins? Trends Biochem Sci. 1990.
    9. Alberts, B. Johnson, A. Lewis, J. Raff, M. Roberts, K. Walter P. Molecular Biology of the Cell, 5th Edition. Garland Science. 2008.
    10. Derby MC, Gleeson PA. New Insights into Membrane Trafficking and Protein Sorting. International Review of Cytology. 2007.
    11. Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, et al. Molecular Cell Biology. Perspective. 2008.
    12. Nickel W, Rabouille C. Mechanisms of regulated unconventional protein secretion. Nature Reviews Molecular Cell Biology. 2009.
    13. Osborne AR, Rapoport TA, van den Berg B. Protein Translocation By the Sec61/Secy Channel. Annu Rev Cell Dev Biol. 2005;21: 529-550.
    14. Nickel W. Unconventional secretory routes: Direct protein export across the plasma membrane of mammalian cells. Traffic. 2005.
    15. Misumi Y, Misumi Y, Miki K, Takatsuki A, Tamura G, Ikehara Y. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J Biol Chem. 1986;
    16. Prudovsky I, Tarantini F, Landriscina M, Neivandt D, Soldi R, Kirov A, et al. Secretion without Golgi. Journal of Cellular Biochemistry. 2008.
    17. Marie M, Sannerud R, Avsnes Dale H, Saraste J. Membrane traffic in the secretory pathway: Take the «A» train: On fast tracks to the cell surface. Cell Mol Life Sci. 2008.
    18. Hughes RC. Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochimica et Biophysica Acta - General Subjects. 1999.
    19. Aumuller G, Wilhelm B, Seitz J. Apocrine secretion--fact or artifact? Anat Anz. 1999.
    20. Mambula SS, Calderwood SK. Heat Shock Protein 70 Is Secreted from Tumor Cells by a Nonclassical Pathway Involving Lysosomal Endosomes. J Immunol. 2006.
    21. de Gassart A, Géminard C, Hoekstra D, Vidal M. Exosome secretion: The art of reutilizing nonrecycled proteins? Traffic. 2004;5: 896-903.
    22. Yu X, Harris SL, Levine AJ. The regulation of exosome secretion: A novel function of the p53 protein. Cancer Res. 2006.
    23. Bopp C, Bierhaus A, Hofer S, Bouchon A, Nawroth PP, Martin E, et al. Bench-to-bedside review: The inflammation-perpetuating pattern-recognition receptor RAGE as a therapeutic target in sepsis. Critical Care. 2008. p. 1-8.
    24. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, et al. Understanding RAGE, the receptor for advanced glycation end products. Journal of Molecular Medicine. 2005.
    25. Herold K, Moser B, Chen Y, Zeng S, Yan SF, Ramasamy R, et al. Receptor for advanced glycation end products (RAGE) in a dash to the rescue: inflammatory signals gone awry in the primal response to stress. J Leukoc Biol. 2007.
    26. Yan SF, Ramasamy R, Schmidt AM. Receptor for AGE (RAGE) and its ligands-cast into leading roles in diabetes and the inflammatory response. Journal of Molecular Medicine. 2009.
    27. Kalea AZ, Reiniger N, Yang H, Arriero M, Schmidt AM, Hudson BI. Alternative splicing of the murine receptor for advanced glycation end-products (RAGE) gene. FASEB J. 2009.
    28. Demling N, Ehrhardt C, Kasper M, Laue M, Knels L, Rieber EP. Promotion of cell adherence and spreading: A novel function of RAGE, the highly selective differentiation marker of human alveolar epithelial type I cells. Cell Tissue Res. 2006.
    29. Hudson BI, Carter AM, Harja E, Kalea AZ, Arriero M, Yang H, et al. Identification, classification, and expression of RAGE gene splice variants. FASEB J. 2007.
    30. Englert JM, Hanford LE, Kaminski N, Tobolewski JM, Tan RJ, Fattman CL, et al. A Role for the Receptor for Advanced Glycation End Products in Idiopathic Pulmonary Fibrosis. Am J Pathol. 2008.
    31. Bartling B, Hofmann H-S, Weigle B, Silber R-E, Simm A. Down-regulation of the receptor for advanced glycation end-products (RAGE) supports non-small cell lung carcinoma. Carcinogenesis. 2005.
    32. Yamagishi S ichi. Role of advanced glycation end products (AGEs) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy. Experimental Gerontology. p. 23(4), 129-134.
    33. Yan SS Du, Wu ZY, Zhang HP, Furtado G, Chen X, Yan SF, et al. Suppression of experimental autoimmune encephalomyelitis by selective blockade of encephalitogenic T-cell infiltration of the central nervous system. Nat Med. 2003.
    34. Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, et al. RAGE mediates a novel proinflammatory axis: A central cell surface receptor for S100/calgranulin polypeptides. Cell. 1999.
    35. Leclerc E, Fritz G, Weibel M, Heizmann CW, Galichet A. S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem. 2007;282: 31317-31331.
    36. Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem. 2000.
    37. Ostendorp T, Weibel M, Leclerc E, Kleinert P, Kroneck PMH, Heizmann CW, et al. Expression and purification of the soluble isoform of human receptor for advanced glycation end products (sRAGE) from Pichia pastoris. Biochem Biophys Res Commun. 2006.
    38. Park H, Boyington JC. The 1.5 Å crystal structure of human receptor for advanced glycation endproducts (RAGE) ectodomains reveals unique features determining ligand binding. J Biol Chem. 2010.
    39. Srikrishna G, Huttunen HJ, Johansson L, Weigle B, Yamaguchi Y, Rauvala H, et al. N -Glycans on the receptor for advanced glycation end products influence amphoterin binding and neurite outgrowth. J Neurochem. 2002.
    40. Hudson BI, Kalea AZ, Del Mar Arriero M, Harja E, Boulanger E, D’Agati V, et al. Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem. 2008.
    41. Harpaz Y, Chothia C. Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J Mol Biol. 1994.
    42. Freigang J, Proba K, Leder L, Diederichs K, Sonderegger P, Welte W. The crystal structure of the ligand binding module of axonin-1/TAG-1 suggests a zipper mechanism for neural cell adhesion. Cell. 2000.
    43. Feinberg H, Mitchell DA, Drickamer K, Weis WI. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science (80- ). 2001.
    44. Zou P, Pinotsis N, Lange S, Song YH, Popov A, Mavridis I, et al. Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature. 2006.
    45. Holden HM, Ito M, Hartshorne DJ, Rayment I. X-ray structure determination of telokin, the C-terminal domain of myosin light chain kinase, at 2.8 A resolution. J Mol Biol. 1992;
    46. Ramasamy R, Yan SF, Schmidt AM. Arguing for the motion: Yes, RAGE is a receptor for advanced glycation endproducts. Molecular Nutrition and Food Research. 2007. p. 51(9) 1111-5.
    47. Schmidt, Ann M.; Clynes, Raphael; Moser, Bernhard; Yan, Shi Fang; Ramasamy, Ravichandran; Herold K. Receptor for AGE (RAGE): Weaving Tangled Webs Within the Inflammatory Response. Current Molecular Medicine. 2007. p. 7(8), 743-751.
    48. Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, et al. RAGE (Receptor for advanced glycation endproducts), RAGE ligands, and their role in cancer and inflammation. Journal of Translational Medicine. 2009. p. 1-21.
    49. Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J. 2006;396: 201-214.
    50. Xie J, Reverdatto S, Frolov A, Hoffmann R, Burz DS, Shekhtman A. Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). J Biol Chem. 2008.
    51. Xie J, Burz DS, He W, Bronstein IB, Lednev I, Shekhtman A. Hexameric calgranulin C (S100A12) binds to the receptor for advanced glycated end products (RAGE) using symmetric hydrophobic target-binding patches. J Biol Chem. 2007.
    52. Salama I, Malone PS, Mihaimeed F, Jones JL. A review of the S100 proteins in cancer. European Journal of Surgical Oncology. 2008.
    53. Vallely KM, Rustandi RR, Ellis KC, Varlamova O, Bresnick AR, Weber DJ. Solution structure of human Mts1 (S100A4) as determined by NMR spectroscopy. Biochemistry. 2002.
    54. Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 1965;19: 739-744.
    55. Bhattacharya S, Chazin WJ. Calcium-driven changes in S100A11 structure revealed. Structure. 2003.
    56. Durussel I, Cox JA, Heizmann CW. S100A13. Biochemical characterization and subcellular localization in different cell lines. 2000;275: 8686-8694.
    57. Skelton NJ, Kördel J, Chazin WJ. Determination of the solution structure of Apo calbindin D9k by NMR spectroscopy. J Mol Biol. 1995.
    58. Nelson MR, Thulin E, Fagan PA, Forsén S, Chazin WJ. The EF-hand domain: A globally cooperative structural unit. Protein Sci. 2009.
    59. Zimmer DB, Wright Sadosky P, Weber DJ. Molecular mechanisms of S100-target protein interactions. Microscopy research and technique. 2003. .
    60. Heizmann CW, Cox JA. New perspectives on s100 proteins: A multi-functional Ca2+-, Zn2+- and Cu2+-binding protein family. BioMetals. 1998.
    61. Hsieh HL, Schäfer BW, Weigle B, Heizmann CW. S100 protein translocation in response to extracellular S100 is mediated by receptor for advanced glycation endproducts in human endothelial cells. Biochem Biophys Res Commun. 2004.
    62. Donato R. S100: A multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. International Journal of Biochemistry and Cell Biology. 2001.
    63. Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech. 2003;60: 540-551.
    64. Marenholz I, Heizmann CW, Fritz G. S100 proteins in mouse and man: From evolution to function and pathology (including an update of the nomenclature). Biochemical and Biophysical Research Communications. 2004. p. 1111-1122.
    65. Heizmann CW. S100 proteins structure functions and pathology. Front Biosci. 2002;7: A846.
    66. Hayrabedyan S, Kyurkchiev S, Kehayov I. FGF-1 and S100A13 possibly contribute to angiogenesis in endometriosis. Journal of Reproductive Immunology. 2005.
    67. Ananyeva NM, Tjuimin A V., Berliner JA, Chisolm GM, Liau G, Winkles JA, et al. Oxidized LDL mediates the release of fibroblast growth factor-1. Arterioscler Thromb Vasc Biol. 1997.
    68. Landriscina M, Schinzari G, Di Leonardo G, Quirino M, Cassano A, D’Argento E, et al. S100A13, a new marker of angiogenesis in human astrocytic gliomas. J Neurooncol. 2006.
    69. Shishibori T, Oyama Y, Matsushita O, Yamashita K, Furuichi H, Okabe A, et al. Three distinct anti-allergic drugs, amlexanox, cromolyn and tranilast, bind to S100A12 and S100A13 of the S100 protein family. Biochem J. 1999.
    70. Http://www.bmrb.wisc.edu/featuredSys/Lysozyme/.
    71. Koda A, Nagai H, Watanabe S, Yanagihara Y, Sakamoto K. Inhibition of hypersensitivity reactions by a new drug, N(3’,4’ dimethoxycinnamoyl) anthranilic acid (N 5’). J Allergy Clin Immunol. 1976;57: 396-407.
    72. Ujiie N, Komatsu HS, Masayuki M, Ikeda S, Kusama H, Nakazawa A. Study of the mechanism of inhibitory action of tranilast on chemical mediator release. Jpn J Pharmacol. 1988;46,: 43–51.
    73. Suzawa H, Kikuchi S, Ichikawa K, Koda A. Inhibitory Action of Tranilast, an Anti-Allergic Drug, on the Release of Cytokines and PGE2 from Human Monocytes-Macrophages. Jpn J Pharmacol. 1992;60: 1992.
    74. Isaji M, Aruga N, Naito J, Miyata H. Inhibition by tranilast of collagen accumulation in hypersensitive granulomatous inflammation in vivo and of morphological changes anf functions of fibroblasts in vitro. Life Sci. 1994;55: 287-292.
    75. Shiota N, Okunishi H, Takai S, Mikoshiba I, Sakonjo H, Shibata N, et al. Tranilast suppresses vascular chymase expression and neointima formation in balloon-injured dog carotid artery. Circulation. 1999; 1084-1090.
    76. Thomas, e.c. (1993) proteins 2nd, 330-333. 1993. p. 33.-333.
    77. Henderson R, Moffat JK. The difference Fourier technique in protein crystallography: errors and their treatment. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem. 1971;B27: 1414-1420.
    78. Banci L. Protein NMR Techniques, Edited by David. G. Reid, Humana Press, Totowa, NJ, 1997. ISBN 0-89603-309-0. Spectrochim Acta Part A Mol Biomol Spectrosc. 1997;60: 1-28.
    79. Bachelard H. NMR of Macromolecules. A Practical Approach edited by G. C. K. Roberts (The Practical Approach Series; series editors, D. Rickwood and B. D. Hames). Oxford University Press, New York, 1993; 399 pp., cloth, ISBN paperback, ISBN. J Neurochem. 1995;64: 468-469.
    80. Welch AD, Years E, Armitage IANM, Kim Y, Ohlrogge JB, Turner DL. NMR Methods for elucidating macromolecule-ligand Introduction: An aproch to drug design. 1989;
    81. Crick D.J. NMR in Drug Design, CRC, Boca Raton, FL. 1995.
    82. David J.CraikKerry A.Higgins. NMR Studies of Ligand–Macromolecule Interactions. 1990. p. 22, 61-138.
    83. Otting G. Experimental NMR techniques for studies of protein-ligand interactions. Curr Opin Struct Biol. 1993;3(5): 760-768.
    84. Fesik SW. NMR Studies of Molecular Complexes as a Tool in Drug Design. J Med Chem. 1991;34: 2937-2945.
    85. Wishart DS, Sykes BD, Richards FM. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991;222: 311-333.
    86. Wishart DS, Sykes BD. The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR. 1994;4: 171-180.
    87. Booker GW, Gout I, Kristina^Downing A, Driscoll PC, Boyd J, Waterfield MD, et al. Solution structure and ligand-binding site of the SH3 domain of the p85α subunit of phosphatidylinositol 3-kinase. Cell. 1993;73: 813-822.
    88. Morton CJ, Pugh DJR, Brown ELJ, Kahmann JD, Renzoni DAC, Campbell ID. Solution structure and peptide binding of the SH3 domain from human Fyn. Structure. 1996;4: 705-714.
    89. London R. E. (1980) magnetic resonance in biology, vol. 1 (cohen j.s., ed), wiley, new york , pp 1-69.
    90. Ando ME, Gerig JT, Luk KFS. Motion at the Active Site of [(4-Fluorophenyl)sulfonyl]chymotrypsin. Biochemistry. 1986;25: 4772-4778.
    91. Engelkamp D, Schäfer BW, Mattei MG, Erne P, Heizmann CW. Six S100 genes are clustered on human chromosome 1q21: identification of two genes coding for the two previously unreported calcium-binding proteins S100D and S100E. Proc Natl Acad Sci U S A. 1993;90: 6547-6551.
    92. Davey GE, Murmann P, Heizmann CW. Intracellular Ca2+ and Zn2+ Levels Regulate the Alternative Cell Density-dependent Secretion of S100B in Human Glioblastoma Cells. J Biol Chem. 2001;276: 30819-30826.
    93. Schäfer BW, Heizmann CW. The S100 family of EF-hand calcium-binding proteins: Functions and pathology. Trends Biochem Sci. 1996;21: 134-140.
    94. Ma L, Sastry M, Chazin WJ. A Structural Basis for S100 Protein Specificity Derived from Comparative Analysis of Apo and Ca 2. J Mol Biol. 2002; 279-290.
    95. Rintala-Dempsey AC, Santamaria-Kisiel L, Liao Y, Lajoie G, Shaw GS. Insights into S100 target specificity examined by a new interaction between S100A11 and annexin A2. Biochemistry. 2006;45: 14695-14705.
    96. Sastry M, Ketchem RR, Crescenzi O, Weber C, Lubienski MJ, Hidaka H, et al. The three-dimensional structure of Ca2+-bound calcyclin: Implications for Ca2+-signal transduction by S100 proteins. Structure. 1998;6: 223-231.
    97. Deloulme JC, Gentil BJ, Baudier J. Monitoring of S100 homodimerization and heterodimeric interactions by the yeast two-hybrid system. Microscopy research and technique. 2003. p. 560-568.
    98. Itou H, Yao M, Fujita I, Watanabe N, Suzuki M, Nishihira J, et al. The crystal structure of human MRP14 (S100A9), a Ca2+-dependent regulator protein in inflammatory process. J Mol Biol. 2002;316: 265-276.
    99. Moroz O V., Antson AA, Dodson EJ, Burrell HJ, Grist SJ, Lloyd RM, et al. The structure of S100A12 in a hexameric form and its proposed role in receptor signalling. Acta Crystallogr Sect D Biol Crystallogr. 2002;58: 407-413.
    100. Machius M, Cianga P, Deisenhofer J, Ward ES. Crystal structure of a T cell receptor Vα11 (AV11S5) domain: New canonical forms for the first and second complementarity determining regions. J Mol Biol. 2001;310: 689-698.
    101. Maco B, Mandinova A, Dürrenberger MB, Schäfer BW, Uhrík B, Heizmann CW. Ultrastructural distribution of the S100A1 Ca2+-binding protein in the human heart. Physiol Res. 2001;50: 567-574.
    102. Adhikari BB, Wang K. S100A1 modulates skeletal muscle contraction by desensitizing calcium activation of isometric tension, stiffness and ATPase. FEBS Lett. 2001;497: 95-98.
    103. Naim R, Hormann K. The role of S100A1 in external auditory canal cholesteatoma. Oncol Rep. 2006;16: 671-675.
    104. Li G, Barthelemy A, Feng G, Gentil-Perret A, Peoc’h M, Genin C, et al. S100A1: A powerful marker to differentiate chromophobe renal cell carcinoma from renal oncocytoma. Histopathology. 2007;50: 642-647.
    105. Mori M, Yamada K, Ohomura H, Wataru K, Takai Y, Ilg E, et al. Immunohistochemical localization of S100A1 and S100A6 in postnatally developing salivary glands of rats. Histochem Cell Biol. 1998;110: 579-587.
    106. Wang G, Zhang S, Fernig DG, Martin-Fernandez M, Rudland PS, Barraclough R. Mutually antagonistic actions of S100A4 and S100A1 on normal and metastatic phenotypes. Oncogene. 2005;24: 1445-1454.
    107. DeRycke MS, Andersen JD, Harrington KM, Pambuccian SE, Kalloger SE, Boylan KLM, et al. S100A1 expression in ovarian and endometrial endometrioid carcinomas is a prognostic indicator of relapse-free survival. Am J Clin Pathol. 2009;132: 846-856.
    108. Remppis A, Greten T, Schäfer BW, Hunziker P, Erne P, Katus HA, et al. Altered expression of the Ca2+-binding protein S100A1 in human cardiomyopathy. Biochim Biophys Acta - Mol Cell Res. 1996;1313: 253-257.
    109. Kraus C, Rohde D, Weidenhammer C, Qiu G, Pleger ST, Voelkers M, et al. S100A1 in cardiovascular health and disease: Closing the gap between basic science and clinical therapy. Journal of Molecular and Cellular Cardiology. 2009. p. 445-455.
    110. Afanador L, Roltsch EA, Holcomb L, Campbell KS, Keeling DA, Zhang Y, et al. The Ca2+sensor S100A1 modulates neuroinflammation, histopathology and Akt activity in the PSAPP Alzheimer’s disease mouse model. Cell Calcium. 2014;56: 68-80.
    111. Diaconescu DE, Dima L, Marinescu DM, Ţânţu MM, Rogozea LM. S100-positive dendritic cells in squamous cell laryngeal cancer. Rom J Morphol Embryol. 2014;55: 1371-1375.
    112. Bresnick AR, Weber DJ, Zimmer DB. S100 proteins in cancer. Nature Reviews Cancer. 2015. p. 96-109.
    113. Chen H, Xu C, Jin Q, Liu Z. S100 protein family in human cancer. Am J Cancer Res. 2014;4: 89-115.
    114. Streicher WW, Lopez MM, Makhatadze GI. Modulation of quaternary structure of S100 proteins by calcium ions. Biophys Chem. 2010;151: 181-186.
    115. Prosser BL, Wright NT, Hernãndez-Ochoa EO, Varney KM, Liu Y, Olojo RO, et al. S100A1 Binds to the Calmodulin-binding Site of Ryanodine Receptor and Modulates Skeletal Muscle Excitation-Contraction Coupling. J Biol Chem. 2008;283: 5046-5057.
    116. Most P, Remppis A, Pleger ST, Löffler E, Ehlermann P, Bernotat J, et al. Transgenic Overexpression of the Ca2+-binding Protein S100A1 in the Heart Leads to Increased in Vivo Myocardial Contractile Performance. J Biol Chem. 2003;278: 33809-33817.
    117. Wright NT, Prosser BL, Varney KM, Zimmer DB, Schneider MF, Weber DJ. S100A1 and calmodulin compete for the same binding site on ryanodine receptor. J Biol Chem. 2008;283: 26676-26683.
    118. Kiewitz R, Acklin C, Schäfer BW, Maco B, Uhrík B, Wuytack F, et al. Ca2+-dependent interaction of S100A1 with the sarcoplasmic reticulum Ca2+-ATPase2a and phospholamban in the human heart. Biochem Biophys Res Commun. 2003;306: 550-557.
    119. Holakovska B, Grycova L, Jirku M, Sulc M, Bumba L, Teisinger J. Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel. J Biol Chem. 2012;287: 16645-16655.
    120. Leclerc E, Fritz G, Vetter SW, Heizmann CW. Binding of S100 proteins to RAGE: An update. Biochimica et Biophysica Acta - Molecular Cell Research. 2009. p. 993-1007.
    121. Rohde D, Ritterhoff J, Voelkers M, Katus HA, Parker TG, Most P. S100A1: A multifaceted therapeutic target in cardiovascular disease. Journal of Cardiovascular Translational Research. 2010. p. 525-537.
    122. Neeper M, Schmidt a M, Brett J, Yan SD, Wang F, Pan YC, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992;267: 14998-15004.
    123. Schmidt A, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, et al. Isolation and characterization of two binding proteins for advanced glycosylation end products from lung tissue which are present on the endothelial cell surface. J Biol Chem. 1992;267: 14987–14997.
    124. Yatime L, Andersen GR. Structural insights into the oligomerization mode of the human receptor for advanced glycation end-products. FEBS J. 2013;280: 6556-6568.
    125. Dattilo BM, Fritz G, Leclerc E, Vander Kooi CW, Heizmann CW, Chazin WJ. The extracellular region of the receptor for advanced glycation end products is composed of two independent structural units. Biochemistry. 2007;46: 6957-6970.
    126. Stern DM, Yan S Du, Yan SF, Schmidt AM. Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Research Reviews. 2002. p. 1-15.
    127. Yan S Du, Bierhaus A, Nawroth PP, Stern DM. RAGE and Alzheimer’s disease: a progression factor for amyloid-beta-induced cellular perturbation? J Alzheimers Dis. 2009;16: 833-43.
    128. Leclerc E, Vetter SW. The role of S100 proteins and their receptor RAGE in pancreatic cancer. Biochimica et Biophysica Acta - Molecular Basis of Disease. 2015. p. 2706-2711.
    129. Tesarova P, Kalousova M, Zima T, Tesar V. HMGB1, S100 proteins and other RAGE ligands in cancer - Markers, mediators and putative therapeutic targets. Biomed Pap. 2016;160: 1-10.
    130. Wright NT, Cannon BR, Zimmer DB, Weber DJ. S100A1: Structure, Function and Therapeutical Potential. Curr Chem Biol. 2009;3: 138-145.
    131. Srikrishna G, Nayak J, Weigle B, Temme A, Foell D, Hazelwood L, et al. Carboxylated N-glycans on RAGE promote S100A12 binding and signaling. J Cell Biochem. 2010;110: 645-659.
    132. Nowakowski M, Ruszczyńska-Bartnik K, Budzińska M, Jaremko Ł, Jaremko M, Zdanowski K, et al. Impact of calcium binding and thionylation of S100A1 protein on its nuclear magnetic resonance-derived structure and backbone dynamics. Biochemistry. 2013;52: 1149-1159.
    133. Vivian JP, Hastings AF, Duggin IG, Wake RG, Wilce MCJ, Wilce JA. The impact of single cysteine residue mutations on the replication terminator protein. Biochem Biophys Res Commun. 2003;310: 1096-1103.
    134. van Zundert GCP, Bonvin AMJJ. Modeling protein–protein complexes using the HADDOCK webserver “modeling protein complexes with HADDOCK”. Methods Mol Biol. 2014;1137: 163-179.
    135. Van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, et al. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J Mol Biol. 2016;428: 720-725.
    136. L.L.C. Schrodinger. The PyMOL Molecular Graphics System, Version 2.0. 2018; 2-9.
    137. Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100B’s double life: Intracellular regulator and extracellular signal. Biochimica et Biophysica Acta - Molecular Cell Research. 2009. p. 1008-1022.
    138. Chaves ML, Camozzato AL, Ferreira ED, Piazenski I, Kochhann R, Dall’Igna O, et al. Serum levels of S100B and NSE proteins in Alzheimer’s disease patients. J Neuroinflammation. 2010;7: 1-7.
    139. Jablonowska A, Bakun M, Kupniewska-Kozak A, Dadlez M. Alzheimer’s disease Aβ peptide fragment 10-30 forms a spectrum of metastable oligomers with marked preference for N to N and C to C monomer termini proximity. J Mol Biol. 2004;344: 1037-1049.
    140. Hutton M, Dix S, Demattos R, May P, Manor EW. The challenge of Alzheimer ’ s disease therapeutic development : an Eli Lilly view Authors.
    141. López-de-Ipiña K, Alonso JB, Travieso CM, Solé-Casals J, Egiraun H, Faundez-Zanuy M, et al. On the selection of non-invasive methods based on speech analysis oriented to automatic Alzheimer disease diagnosis. Sensors (Switzerland). 2013;13: 6730-6745.
    142. Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, et al. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiology of Aging. 2011. p. 763-777.
    143. Bianchi R, Kastrisianaki E, Giambanco I, Donato R. S100B protein stimulates microglia migration via rage-dependent up-regulation of chemokine expression and release. J Biol Chem. 2011;286: 7214-7226.
    144. Mrak RE, Griffin WST. The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer’s disease. Neurobiol Aging. 2001;22: 915-922.
    145. Ramzy T, Wafai H, Harvy M, Morsy S, Ashour M. RTICLES Serum levels of S100B and oxidative stress parameters in Alzheimer’s disease (AD) in experimental animals. 1. 2011;7: 1411-1418.
    146. Heizmann CW, Ackermann GE, Galichet a. Pathologies involving the S100 proteins and RAGE. Subcell Biochem. 2007;45: 93-138.
    147. Peskind ER, Griffin WST, Akama KT, Raskind MA, Van Eldik LJ. Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer’s disease. Neurochem Int. 2001;39: 409-413.
    148. Petzold A, Jenkins R, Watt HC, Green AJE, Thompson EJ, Keir G, et al. Cerebrospinal fluid S100B correlates with brain atrophy in Alzheimer’s disease. Neurosci Lett. 2003;336: 167-170.
    149. Rothermundt M, Peters M, Prehn JHM, Arolt V. S100B in brain damage and neurodegeneration. Microscopy research and technique. 2003. p. 614-632.
    150. Diaz-Romero J, Quintin A, Schoenholzer E, Pauli C, Despont A, Zumstein MA, et al. S100A1 and S100B expression patterns identify differentiation status of human articular chondrocytes. J Cell Physiol. 2014;229: 1106-1117.
    151. Diaz-Romero J, Kürsener S, Kohl S, Nesic D. S100B + A1 CELISA: A Novel Potency Assay and Screening Tool for Redifferentiation Stimuli of Human Articular Chondrocytes. J Cell Physiol. 2017;232: 1559-1570.
    152. Gelse K, Ekici AB, Cipa F, Swoboda B, Carl HD, Olk A, et al. Molecular differentiation between osteophytic and articular cartilage - clues for a transient and permanent chondrocyte phenotype. Osteoarthr Cartil. 2012;20: 162-171.
    153. Berridge M V., Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnology Annual Review. 2005. p. 127-152.
    154. Selleck W, Tan S. Recombinant protein complex expression in E. coli. Curr Protoc Protein Sci. 2008;Chapter 5: Unit 5.21.
    155. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology. 2014.
    156. Lee W, Tonelli M, Markley JL. NMRFAM-SPARKY: Enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 2015;15: 1325-1327.
    157. Smith SP, Shaw GS. A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form. Structure. 1998;6: 211-222.
    158. Malleshappa Gowder S, Chatterjee J, Chaudhuri T, Paul K. Prediction and analysis of surface hydrophobic residues in tertiary structure of proteins. ScientificWorldJournal. 2014;2014: ID 971258, 7 pages.
    159. van Dijk ADJ, Kaptein R, Boelens R, Bonvin AMJJ. Combining NMR relaxation with chemical shift perturbation data to drive protein-protein docking. J Biomol NMR. 2006;34: 237-244.
    160. Linge JP, Williams MA, Spronk CAEM, Bonvin AMJJ, Nilges M. Refinement of protein structures in explicit solvent. Proteins Struct Funct Genet. 2003;50: 496-506.
    161. Fernández-Recio J, Totrov M, Abagyan R. Identification of protein-protein interaction sites from docking energy landscapes. J Mol Biol. 2004;335: 843-865.
    162. Water Soluble Tetrazolium Salts ( WSTs ). interchim.com Interchim Retrieved 2013-08-12. 2013;33: 8-11.
    163. Williamson MP. Using chemical shift perturbation to characterise ligand binding. Progress in Nuclear Magnetic Resonance Spectroscopy. 2013. p. 1-16.
    164. Gupta AA, Mohan SK, Chin Y. 1H,13C and15N backbone and side chain resonance assignments of human halo S100A1. Biomol NMR Assign. 2012;6: 213-215.
    165. Matsumoto S, Yoshida T, Murata H, Harada S, Fujita N, Nakamura S, et al. Solution structure of the variable-type domain of the receptor for advanced glycation end products: New insight into AGE-RAGE interaction. Biochemistry. 2008;47: 12299-12311.
    166. Lane AN, Lefevre JF. Nuclear magnetic resonance measurements of slow conformational dynamics in macromolecules. Methods Enzymol. 1994;239: 596-619.
    167. Takeuchi K, Wagner G. NMR studies of protein interactions. Current Opinion in Structural Biology. 2006. p. 109-117.
    168. Gupta AA, Chou RH, Li H, Yang LW, Yu C. Structural insights into the interaction of human S100B and basic fibroblast growth factor (FGF2): Effects on FGFR1 receptor signaling. Biochim Biophys Acta - Proteins Proteomics. 2013.
    169. Lakowicz JR. Principles of fluorescence spectroscopy [Internet]. Lakowicz JR, editor. Springer US; 2006.
    170. Fernandez-Fernandez MR, Veprintsev DB, Fersht AR. Proteins of the S100 family regulate the oligomerization of p53 tumor suppressor. Proc Natl Acad Sci. 2005;102: 4735-4740.
    171. Liang H, Zhong Y, Zhou S, Peng L. Knockdown of RAGE expression inhibits colorectal cancer cell invasion and suppresses angiogenesis in vitro and in vivo. Cancer Lett. 2011;313: 91-98.
    172. Nakatsuji T, Gallo RL. Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol. 2012;132: 887-895.
    173. Ganz T. Antimicrobial polypeptides. J Leukoc Biol. 2004;75: 34-38.
    174. Fleming A. On a Remarkable Bacteriolytic Element Found in Tissues and Secretions. Proc R Soc B Biol Sci. 1922;93: 306-317.
    175. Vanderkelen L, Van Herreweghe JM, Vanoirbeek KGA, Baggerman G, Myrnes B, Declerck PJ, et al. Identification of a bacterial inhibitor against g-type lysozyme. Cell Mol Life Sci. 2011;68: 1053-1064.
    176. Callewaert L, Michiels CW. Lysozymes in the animal kingdom. J Biosci. 2010;35: 127-160.
    177. Jolles P, Jolles J. What’s new in lysozyme research? Mol Cell Biochem. 1984;63: 165-189.
    178. Pipe RK. Hydrolytic enzymes associated with the granular haemocytes of the marine mussel Mytilus edulis. Histochem J. 1990;22: 595-602.
    179. Klockars M, Reitamo S. Tissue distribution of lysozyme in man. J Histochem Cytochem. 1975;23: 932-940.
    180. Mason DY, Taylor CR. The distribution of muramidase (lysozyme) in human tissues. J Clin Pathol. 1975;28: 124-132.
    181. Ralph P. Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines. J Exp Med. 1976;143: 1528-1533.
    182. Osserman EF. Serum and urinary lysozyme (muramidase) in monocytic and monomyelocytic leukemia. J Exp Med. 1966;124: 921-952.
    183. Guo TK, Zhao X, Xie XD, Chen ZH, Zhou CS, Wei LL, et al. The anti-proliferative effects of recombinant human lysozyme on human gastric cancer cells. J Int Med Res. 2007;35: 353-360.
    184. Jabeen A, Reeder B, Hisaindee S, Ashraf S, Darmaki N Al, Battah S, et al. Effect of Enzymatic pre-treatment of microalgae extracts on their anti-tumor activity. Biomed J. Elsevier Ltd; 2017;40: 339-346.
    185. Ye J, Wang C, Chen X, Guo S, Sun M. Marine lysozyme from a marine bacterium that inhibits angiogenesis and tumor growth. Appl Microbiol Biotechnol. 2008;77: 1261-1267.
    186. Mahanta S, Paul S, Srivastava A, Pastor A, Kundu B, Chaudhuri TK. Stable self-assembled nanostructured hen egg white lysozyme exhibits strong anti-proliferative activity against breast cancer cells. Colloids Surfaces B Biointerfaces. Elsevier B.V.; 2015;130: 237-245.
    187. Lee-Huang S, Huang PL, Sun Y, Kung HF, Blithe DL, Chen HC. Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin. Proc Natl Acad Sci U S A. 1999;96: 2678-2681.
    188. Varaldo PE, Valisena S, Mingari MC, Satta G. Lysozyme-induced inhibition of the lymphocyte response to mitogenic lectins. Proceedings of the Society for Experimental Biology and Medicine; 1989. p. 190 (1) 54-62.
    189. Yabe N, Komiya K, Takezono T, Matsui H, Co NO. Lysozyme as a regulator of interleukin-2-activated lymphocyte proliferation. 1993;29A: 795-806.
    190. Kawai Y, Mickiewicz K, Errington J. Lysozyme Counteracts β-Lactam Antibiotics by Promoting the Emergence of L-Form Bacteria. Cell. 2018;172: 1038-1049.
    191. Chen T ting, Tan L rong, Hu N, Dong Z qi, Hu Z gang, Jiang Y ming, et al. C-lysozyme contributes to antiviral immunity in Bombyx mori against nucleopolyhedrovirus infection. J Insect Physiol. 2018;108: 54-60.
    192. Thordarson G, Southard JN, Talamantes F. Purification and characterization of mouse decidual calcyclin: A novel stimulator of mouse placental lactogen-II secretion. Endocrinology. 1991;129: 1257-1265.
    193. Calabretta B, Battini R, Kaczmarek L, de Riel JK, Baserga R. Molecular cloning of the cDNA for a growth factor-inducible gene with strong homology to S-100, a calcium-binding protein. J Biol Chem. 1986;261: 12628-12632.
    194. Kuznicki J, Filipek A, Hunziker PE, Huber S, Heizmann CW. Calcium-binding protein from mouse Ehrlich ascites-tumour cells is homologous to human calcyclin. Biochem.J. 1989. p. 951-956.
    195. Kuznicki, J, Filipek A. Purification and Properties of a Novel Xyloglucan-specific. Society. 1987. p. 663-667.
    196. Filipek A, Wojda U. Chicken Gizzard Calcyclin — Distribution and Potential Target Proteins. Biochem Biophys Res Commun. 1996;225: 151-154.
    197. Nail M H, Sorkhy A. Herbs that Promote Cell Proliferation. Int J Herb Med IJHM. 2014;18: 18-21.
    198. Mao J, Huang S, Liu S, Feng XL, Yu M, Liu J, et al. A herbal medicine for Alzheimer’s disease and its active constituents promote neural progenitor proliferation. Aging Cell. 2015;14: 784-796.
    199. Zhivotovsky B, Orrenius S. Cell cycle and cell death in disease: Past, present and future. J Intern Med. 2010;268: 395-409.
    200. Srinageshwar B, Maiti P, Dunbar GL, Rossignol J. Role of epigenetics in stem cell proliferation and differentiation: Implications for treating neurodegenerative diseases. Int J Mol Sci. 2016;17: 1-15.
    201. Penumutchu SR, Chou RH, Yu C. Structural insights into calcium-bound S100P and the V domain of the RAGE complex. PLoS One. 2014.
    202. Khan MI, Yuan T, Chou R-H, Yu C. S100A4 inhibits cell proliferation by interfering with the S100A1-RAGE V domain. PLoS One. 2019;14: e0212299.
    203. Chang CC, Khan I, Tsai KL, Li H, Yang LW, Chou RH, et al. Blocking the interaction between S100A9 and RAGE V domain using CHAPS molecule: A novel route to drug development against cell proliferation. Biochim Biophys Acta - Proteins Proteomics. 2016;1864: 1558-1569.
    204. Dowarha D, Chou RH, Yu C. S100B as an Antagonist to Interfere with the Interface Area Flanked by S100A11 and RAGE v Domain. ACS Omega. 2018;3: 9689-9698.
    205. Katte R, Yu C. Blocking the interaction between S100A9 protein and RAGE V domain using S100A12 protein. PLoS One. 2018;13: e0198767.
    206. Dominguez C, Boelens R, Bonvin AMJJ. HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc. 2003;125: 1731-1737.
    207. Khan I, Su Y, Zou J, Yang L, Chou R. S100B as an antagonist to block the interaction between S100A1 and the RAGE V domain. PLoS One. 2018;13: e0190545.
    208. Burstein EA, Vedenkina NS, Ivkova MN. Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol. 1973;18: 263-279.
    209. Liu X, Obiany O, Chan CB, Huang J, Xue S, Yang JJ, et al. Biochemical and biophysical investigation of the brain-derived neurotrophic factor mimetic 7,8-dihydroxyflavone in the binding and activation of the trkb receptor. J Biol Chem. 2014;289: 27571-27584.
    210. Schlörb C, Ackermann K, Richter C, Wirmer J, Schwalbe H. Heterologous expression of hen egg white lysozyme and resonance assignment of tryptophan side chains in its non-native states. J Biomol NMR. 2005;33: 95-104.
    211. Buck M, Boyd J, Redfield C, MacKenzie DA, Jeenes DJ, Archer DB, et al. Structural determinants of protein dynamics: Analysis of 15N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme. Biochemistry. 1995;34: 4041-4055.
    212. Lee YT, Dimitrova YN, Schneider G, Ridenour WB, Bhattacharya S, Soss SE, et al. Structure of the S100A6 complex with a fragment from the C-terminal domain of Siah-1 interacting protein: A novel mode for S100 protein target recognition. Biochemistry. 2008;47: 10921–10932.
    213. Subramaniam V, Ace O, Prud’homme GJ, Jothy S. Tranilast treatment decreases cell growth, migration and inhibits colony formation of human breast cancer cells. Exp Mol Pathol. 2011;90: 116-122.
    214. Subramaniam V, Chakrabarti R, Prud’Homme GJ, Jothy S. Tranilast inhibits cell proliferation and migration and promotes apoptosis in murine breast cancer. Anticancer Drugs. 2010;21: 351-61.

    QR CODE