研究生: |
黃俊杰 Chun-Chieh Huang |
---|---|
論文名稱: |
同步動態隨機存取記憶體的延遲錯誤模型與效能測試 SDRAM Delay Fault Modeling and Performance Testing |
指導教授: |
吳誠文
Cheng-Wen Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 延遲錯誤 、錯誤模型 、時間參數 、動態隨機存取記憶體 、同步動態隨機存取記憶體 |
外文關鍵詞: | delay fault, fault model, timing parameter, DRAM, SDRAM |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
動態隨機存取記憶體(DRAM)時間參數的測試長久以來一直被認為是個複雜且耗時的過程。本論文針對目前市面上常見的同步動態隨機存取記憶體(SDRAM)提出整個系統化分析時間參數和硬體架構的方法,並且整理該記憶體電路中所有的延遲錯誤形態,我們發現傳統的函數錯誤模型沒辦法測試出某些跟時間參數相關的錯誤型態,也就是為什麼目前工業界的測試流程是在測試完函數錯誤後再額外測試時間參數,對於這些複雜的時間參數測試,我們利用延遲錯誤模型並提出簡單的測試方法來解決。
本論文針對這些時間參數,整理從SPICE電路模型得到的模擬結果提出四個延遲錯誤模型,分別為「控制器延遲錯誤模型(Controller Delay Fault Model)」、「分支位元線延遲錯誤模型(Sub-Bitline Delay Fault Model)」、「主位元線延遲錯誤模型(Main-Bitline Delay Fault Model)」及「讀取驅動器延遲錯誤模型(Read Driver Delay Fault Model)」,並且討論這些錯誤的激發條件和觀察條件,最後提出一個March的測試演算法,藉由測試這四個簡單且高階的延遲錯誤模型來確保記憶體時間參數的正確性,可以簡化原本複雜的測試流程,也可以縮短整體測試與錯誤診斷的時間。
最後,本論文也提出一個具有測試時間參數能力的內建式自我測試電路(Built-In Self-Test Circuit),相較於傳統的內建式自我測試電路有15.9%的額外硬體面積,而針對256-Mbit的同步動態隨機存取記憶體所提出的內建式自我測試電路佔該記憶體的硬體面積小於1%。
DRAM timing parameter testing has always been considered a complex and time-consuming process.
This thesis presents a systematic approach to analysis of the synchronous DRAM (SDRAM)
circuit and classification of all SDRAM delay failure modes. We show that certain failure modes
that are directly linked to existing timing parameters are not covered by traditional functional fault
models. Therefore, the current practice in the industry is to test the critical timing parameters separately,
in addition to testing the functional faults. In this thesis four delay fault models are proposed
to cover these critical timing parameters. The activation and observation conditions for these delay
faults are discussed and thus theMarch test solution is presented. The test can further be supported
by our proposed programmable BIST, which the area overhead is considered 15.9% compared to
conventional BIST, less than 1% compared to the memory die size. By only testing these four types
of delay faults, we can verify the correctness of timing specifications without traditional complex
patterns.
[1] P. Nigh and A. Gattiker, “Test method evaluation experiments and data”, in Proc. Int’l Test
Conf. (ITC), Baltmore, Oct. 2000, pp. 454–463.
[2] W. Needham, C. Prunty, and E. H. Yeoh, “High volume microprocessor test escapes, an
analysis of defects our tests are missing”, in Proc. Int’l Test Conf. (ITC), Washington, DC,
Oct. 1998, pp. 25–34.
[3] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, S. Borri, and M. Hage-Hassan,
“Resistive-open defects in embedded-SRAM core cells: Analysis and march test solution”,
in IEEE Asian Test Symp. (ATS), Kenting, Nov. 2004, pp. 266–271.
[4] R.-F. Huang, Y.-T. Lai, Y.-F. Chou, and C.-W. Wu, “SRAM delay fault modeling and test
algorithm development”, in Proc. Asia and South Pacific Design Automation Conf. (ASPDAC),
Yokohama, Jan. 2004, pp. 104–109.
[5] A. J. van de Goor, S. Hamdioui, and R.Wadsworth, “Detecting faults in the peripheral circuits
and an evaluation of SRAM tests”, in Proc. Int’l Test Conf. (ITC), Charlotte, Oct. 2004, pp.
114–123.
[6] Ad J. van de Goor, S. Hamdioui, and Z. Al-Ars, “Tests for address decoder faults in RAMs
due to inter-gate opens”, in Proc. IEEE European Test Symp. (ETS), Ajaccio, May 2004, pp.
146–151.
[7] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, and S. Borri, “Comparison of open and
resistive-open defect test conditions in SRAM address decoders”, in IEEE Asian Test Symp.
(ATS), Xian, Nov. 2003, pp. 250–255.
[8] L. Dilillo, P. Girard, S. Pravossoudovitch, and A. Virazel, “Resistive-open defect influence
in SRAM pre-charge circuits: Analysis and characterization”, in Proc. IEEE European Test
Symp. (ETS), Tallinn, May 2005, pp. 116–121.
[9] T. Furuyama, “Trends and challenges of large scale embedded memories”, in Proc. IEEE
Custom Integrated Circuits Conf. (CICC), Orlando, Oct. 2004, pp. 449–456.
[10] K. Itoh, VLSI Memory Chip Design, Springer-Verlag, New York, 2001.
[11] C.-W. Wang, K.-L. Cheng, J.-N. Lee, Y.-F. Chou, C.-T. Huang, C.-W. Wu, F. Huang, and
H.-T. Yang, “Fault pattern oriented defect diagnosis for memories”, in Proc. Int’l Test Conf.
(ITC), Charlotte, Sept. 2003, pp. 29–38.
[12] Z. Al-Ars and Ad J. van de Goor, “Static and dynamic behavior of memory cell array opens
and shorts in embedded DRAMs”, in Proc. Conf. Design, Automation, and Test in Europe
(DATE), Munich, Mar. 2001, pp. 496–503.
[13] A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice, John Wiley &
Sons, Chichester, England, 1991.
[14] C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and T.-Y. Chang, “A programmable BIST
core for embedded DRAM”, IEEE Design & Test of Computers, vol. 16, no. 1, pp. 59–70,
Jan.-Mar. 1999.
[15] K.-J. Lin and C.-W. Wu, “PMBC: a programmable BIST compiler for memory cores”, in
Third IEEE Int’l Workshop on Testing Embedded Core-Based System-Chips (TECS), Dana
Point, Apr. 1999, pp. P2.1–P2.6.
[16] C. Cheng, C.-T. Huang, J.-R. Huang, C.-W. Wu, C.-J. Wey, and M.-C. Tsai, “BRAINS: A
BIST complier for embedded memories”, in Proc. IEEE Int’l Symp. on Defect and Fault
Tolerance in VLSI Systems (DFT), Yamanashi, Oct. 2000, pp. 299–307.
[17] H. Mehta, R.M. Owens, and M.J. Irwin, “Some issues in gray code addressing”, in Proc.
Sixth VLSI Sym., Ames,IA, Mar. 1996, pp. 178–181.