簡易檢索 / 詳目顯示

研究生: 張雅婷
Chang, Ya Ting
論文名稱: 乳癌細胞株MDA-MB-157中不可逆的β2–microglobulin缺陷導致免疫組織相容性複合體第一型缺失的分子機制研究
Molecular mechanisms underlying total MHC class I loss caused by irreversible β2–microglobulin defects in the breast carcinoma cell line MDA-MB-157
指導教授: 張鑑中
Chang, Chien Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 63
中文關鍵詞: 免疫組織相容性複合體第一型乳癌
外文關鍵詞: MHC class I
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    免疫組織相容性複合體第一型分子它可以呈現由腫瘤抗原衍生的小片段胜肽給CD8+毒殺性T細胞辨識,在誘導宿主對腫瘤的專一性免疫反應中扮演著重要的角色。因此很多類型的腫瘤細胞包括乳癌細胞都利用降低腫瘤細胞內免疫組織相容性複合體第一型分子的表現或使之不表現來當作一種免疫逃避的機制。在本研究當中,我們檢測了一株人類乳癌細胞株MDA-MB-157,此株細胞是由一轉移性乳癌病人身上所分離。經由流式細胞儀實驗,在MDA-MB-157細胞表面不能偵測到免疫組織相容性複合體第一型分子,但是在另一株當做對照組的乳癌細胞株MDA-MB-231細胞表面可以偵測到大量的免疫組織相容性複合體第一型分子。經由西方墨點法分析各種抗原修飾系統的分子以及免疫組織相容性複合體第一型分子的次單位,MDA-MB-157細胞的主要缺陷是缺失了一種12000道耳吞的分子□2–microglobulin (□2m),□2m對於免疫組織相容性複合體第一型分子的組裝和運輸不可或缺。經由定量的反轉錄聚合酶連鎖反應以及核酸定序,顯示出MDA-MB-157細胞有較少的□2m訊息核醣核酸,而且在編碼區沒有突變,由此結果推測可能是一種後轉錄或後轉譯的□2m缺陷。MDA-MB-157細胞處理蛋白酶體抑制劑MG-132後,□2m蛋白質表現沒有恢復,排除了□2m蛋白質缺失是由於快速的蛋白質分解所造成的原因。為了研究是否有突變存在在□2m 訊息核醣核酸的未轉譯區,利用3’端快速增殖cDNA端點的方法去找出MDA-MB-157細胞的□2m 3’ cDNA端點,但是和對照組的結果相比,偵測不到MDA-MB-157細胞的□2m未轉譯區。除此之外,基因體聚合酶連鎖反應只偵測到□2m基因第一個和第四個外顯子,中間的基因片段都偵測不到。穩定的轉染一個可以編碼出□2m蛋白質的質體進入MDA-MB-157細胞,並且恢復□2m蛋白質表現,指出□2m對於免疫組織相容性複合體第一型分子組裝的重要性。自然殺手細胞毒殺性試驗證實MDA-MB-157細胞可以抵抗自然殺手細胞的毒殺,此結果指出缺乏免疫組織相容性複合體第一型分子的腫瘤細胞會發展出對自然殺手細胞的抵抗性。我們的結果顯示了一種新的基因以及後轉錄的機制,造成乳癌細胞缺乏免疫組織相容性複合體第一型分子以及對自然殺手細胞有抵抗性。這些發現暗示了新的治療策略,在病人身上增加腫瘤細胞對於免疫系統攻擊的感受性。


    Abstract
    Major histocompatibility complex (MHC) class I molecules play an important role in eliciting host tumor-specific immune response since they present tumor antigen-derived peptides to CD8+ cytotoxic T lymphocytes. Accordingly, loss or downregulaton of MHC class I expression in tumor cells represents an immune escape mechanism utilized by a variety of tumor cell types including breast carcinoma. In this study, we have examined the mechanisms underlying MHC class I loss by the human breast carcinoma cell line MDA-MB-157, which was derived from a metastatic medulallary breast carcinoma lesion. Flow cytometry did not detect MHC class I expression on MDA-MB-157 cells but showed robust expression on MDA-MB-231 cells, a positive-control cell line. Western blot analysis of various antigen processing machinery components and MHC class I subunits in the presence and absence of IFN-□ stimulation identified loss of□□2–microglobulin (□2m), a 12 kDa subunit critical for MHC class I assembly and transport, as a major defect in MDA-MB-157 cells. Subsequently, quantitative real-time RT-PCR and nucleotide sequencing analysis of the □2m mRNA in MDA-MB-157 cells detected fair amounts of steady-state □2m transcripts with no mutations in the coding region, suggesting a post-transcriptional/translational defect. Treatment of MDA-MB-157 cells with the proteasome inhibitor MG-132 did not restore □2m expression, ruling out accelerated □2m protein degradation as a possible mechanism. To investigate whether mutations exist in the □2m mRNA untranslated regions (UTR), Rapid Amplification of cDNA Ends (RACE) was employed but, surprisingly, did not detect any UT fragments compared to controls. Moreover, genomic PCR with walking primers failed to amplify a large internal region of the □2m gene in MDA-MB-157 cells except exon 1 and exon 4. The critical role of □2m in the proper assembly and surface expression of MHC class I was indicated by the restoration of HLA class I on MDA-MB-157 cells stably transfected with a □2m-encoding plasmid. Lastly, cytotoxicity assay demonstrated that MDA-MB-157 cells were resistant to NK cell-mediated cytolysis, suggesting the development of tumor NK-resistance in the absence of HLA class I expression. Taken together, our results revealed novel genetic and post-transcriptional mechanisms underlying total HLA class I loss by a breast carcinoma cell line and its NK-resistance phenotype. These findings may suggest new therapeutic strategies to increase the susceptibility of tumor cells to immune destruction in patients.

    CONTENTS 謝誌 I ABSTRACT II 中文摘要 IV ABBREVIATIONS VI CONTENTS VIII CHAPTER 1 BACKGROUND AND SIGNIFICANCE 1 1.1 GENERAL BACKGROUND 1 1.2 HLA BIOLOGY 3 1.3 □2-MICROGLOBULIN□(□2M) 4 1.4 LOSS OF HETEROZYGOSITY (LOH) 6 1.5 HLA PHENOTYPE OF BREAST CARCINOMA CELL LINES 7 1.6 HYPOTHESIS AND SPECIFIC AIMS 8 CHAPTER 2 MATERIALS AND METHODS 9 2.1 CELL CULTURE 9 2.2 ANTIBODIES 9 2.3 CYTOKINES AND PHARMACOLOGICAL INHIBITORS 10 2.4 TOTAL CELL LYSATE PREPARATION 11 2.5 QUANTIFICATION OF PROTEIN CONCENTRATION 11 2.6 WESTERN BLOTTING 12 2.7 FLOW CYTOMETRY 13 2.8 REVERSE TRANSCRIPTION (RT)-PCR 13 2.9 REAL TIME-PCR 14 2.10 RAPID AMPLIFICATION OF CDNA ENDS (RACE) 14 2.12 ELECTROPORATION-MEDIATED GENE TRANSFER 15 2.13 GENERATION OF STABLE TRANSFECTANTS 15 2.14 IN VITRO ISOLATION OF LYMPHOCYTES FROM HUMAN WHOLE BLOOD 15 2.15 NK CELL CYTOTOXICITY ASSAY 16 CHAPTER 3 RESULTS 19 3.1 MDA-MB-157 BREAST CARCINOMA CELLS DO NOT EXPRESS MHC CLASS I MOLECULES ON THE CELL SURFACE. 19 3.2 LACK OF □2M EXPRESSION IN SPITE OF APM COMPONENT EXPRESSION BY MDA-MB-157 BREAST CARCINOMA CELLS. 19 3.3 EXPRESSION OF □2M MRNA AND ITS UP-REGULATION BY IFN-□ IN MDA-MB-157 CELLS 20 3.4 THE CODING SEQUENCE OF □2M MRNA IN MDA-MB-157 CELLS AND THAT IN MDA-MB-231 CELLS ARE 100% IDENTICAL. NO MUTATION EXISTS. 21 3.5 LOH AT THE □2M GENE IN CHROMOSOME 15 IN MDA-MB-157 CELLS. 22 3.6 □2M PROTEIN EXPRESSION WAS NOT RESTORED IN MDA-MB-157 CELLS AFTER TREATMENT WITH PROTEASOME INHIBITOR MG-132 AND/OR DNA DEMETHYLATING AGENT 5-AZA-2’-DEOXYCYTIDINE (5ADC). 22 3.7 3’ UTR OF MDA-MB-157 Β2M MRNA COULD NOT BE AMPLIFIED BY 3’RACE. 23 3.8 GENOMIC PCR WITH WALKING PRIMERS FAILED TO AMPLIFY A LARGE INTERNAL REGION OF THE □2M GENE IN MDA-MB-157 CELLS EXCEPT EXON 1 AND EXON 4. 24 3.9 MHC CLASS I EXPRESSION WAS RESTORED ON MDA-MB-157 CELLS AFTER STABLE TRANSFECTION WITH □2M -ENCODING PLASMIDS. 24 3.10 MDA-MB-157 CELLS COULD NOT BE LYSED BY NK CELLS ISOLATED FROM HUMAN PERIPHERAL BLOOD AND DID NOT EXPRESS NKG2D LIGAND MICA ON THE CELL SURFACE. 25 CHAPTER 4 CONCLUSIONS AND DISCUSSION 27 CONCLUSIONS 27 DISCUSSION 27 CHAPTER 5 FUTURE DIRECTIONS 30 REFERENCES 31 TABLES 37 TABLE 1. MOLECULAR DEFECTS UNDERLYING CLASSICAL HLA CLASS I ANTIGEN ABNORMALITIES CAUSED BY □2M MUTATIONS IN MALIGNANT CELLS 37 TABLE 2. RT-PCR PRIMER LIST 38 TABLE 3. REAL TIME-PCR PRIMER LIST 39 TABLE 4. RACE-PCR PRIMER LIST 40 TABLE 5. □2M GENOMIC PCR PRIMER LIST 41 FIGURES 42 FIGURE 1. MHC CLASS I MOLECULES ARE CRUCIAL FOR CD8+ T CELL RECOGNITION AND DESTRUCTION OF TUMOR CELLS. 42 FIGURE 2. IMMUNE SELECTION OF HOT-SPOT □2M GENE MUTATIONS. 44 FIGURE 3. ANTIGEN PROCESSING MACHINERY 45 FIGURE 4. ANALYSIS OF A PANEL OF BREAST CARCINOMA CELL LINES FOR HLA CLASS I, HLA-A, AND HLA-B,-C EXPRESSION BY FLOW CYTOMETRY. 46 FIGURE 5. MDA-MB-157 BREAST CARCINOMA CELLS DO NOT EXPRESS MHC CLASS I MOLECULES ON THE CELL SURFACE. 47 FIGURE 6. LACK OF □2M EXPRESSION IN SPITE OF APM COMPONENT EXPRESSION BY MDA-MB-157 BREAST CARCINOMA CELLS. 48 FIGURE 7. EXPRESSION OF □2M MRNA AND ITS UP-REGULATION BY IFN-□ IN MDA-MB-157 CELLS. 50 FIGURE 8. THE CODING SEQUENCE OF □2M MRNA IN MDA-MB-157 CELLS AND THAT IN MDA-MB-231 CELLS ARE 100% IDENTICAL. NO MUTATION EXISTS. 51 FIGURE 9. LOH AT THE □2M GENE IN CHROMOSOME 15 IN MDA-MB-157 CELLS. 53 FIGURE 10. □2M PROTEIN EXPRESSION WAS NOT RESTORED IN MDA-MB-157 CELLS AFTER TREATMENT WITH PROTEASOME INHIBITOR MG-132 AND/OR DNA DEMETHYLATING AGENT 5-AZA-2’-DEOXYCYTIDINE (5ADC). 54 FIGURE 11. 3’ UTR OF MDA-MB-157 □2M MRNA COULD NOT BE AMPLIFIED BY 3’RACE 55 FIGURE 12. GENOMIC PCR WITH WALKING PRIMERS FAILED TO AMPLIFY A LARGE INTERNAL REGION OF THE □2M GENE IN MDA-MB-157 CELLS EXCEPT EXON 1 AND EXON 4. 58 FIGURE 13. MHC CLASS I EXPRESSION WAS RESTORED ON MDA-MB-157 CELLS AFTER STABLE TRANSFECTION WITH □2M -ENCODING PLASMIDS. 60 FIGURE 14. MDA-MB-157 CELLS COULD NOT BE LYSED BY NK CELLS ISOLATED FROM HUMAN PERIPHERAL BLOOD AND NO MICA EXPRESSION ON THE CELL SURFACE. 63

    References
    1. Chang, C. C., M. Campoli, and S. Ferrone. 2005. Classical and nonclassical HLA class I antigen and NK Cell-activating ligand changes in malignant cells: current challenges and future directions. Adv Cancer Res 93:189-234.
    2. Chang, C. C., M. Campoli, N. P. Restifo, X. Wang, and S. Ferrone. 2005. Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy. J Immunol 174:1462-1471.
    3. Christianson, G. J., W. Brooks, S. Vekasi, E. A. Manolfi, J. Niles, S. L. Roopenian, J. B. Roths, R. Rothlein, and D. C. Roopenian. 1997. Beta 2-microglobulin-deficient mice are protected from hypergammaglobulinemia and have defective antibody responses because of increased IgG catabolism. J Immunol 159:4781-4792.
    4. Hoglund, P., R. Glas, C. Menard, A. Kase, M. H. Johansson, L. Franksson, F. Lemmonier, and K. Karre. 1998. Beta2-microglobulin-deficient NK cells show increased sensitivity to MHC class I-mediated inhibition, but self tolerance does not depend upon target cell expression of H-2Kb and Db heavy chains. Eur J Immunol 28:370-378.
    5. Rowley, D. R., T. D. Dang, L. McBride, M. J. Gerdes, B. Lu, and M. Larsen. 1995. Beta-2 microglobulin is mitogenic to PC-3 prostatic carcinoma cells and antagonistic to transforming growth factor beta 1 action. Cancer Res 55:781-786.
    6. Huang, W. C., D. Wu, Z. Xie, H. E. Zhau, T. Nomura, M. Zayzafoon, J. Pohl, C. L. Hsieh, M. N. Weitzmann, M. C. Farach-Carson, and L. W. Chung. 2006. beta2-microglobulin is a signaling and growth-promoting factor for human prostate cancer bone metastasis. Cancer Res 66:9108-9116.
    7. Nomura, T., W. C. Huang, H. E. Zhau, D. Wu, Z. Xie, H. Mimata, M. Zayzafoon, A. N. Young, F. F. Marshall, M. N. Weitzmann, and L. W. Chung. 2006. Beta2-microglobulin promotes the growth of human renal cell carcinoma through the activation of the protein kinase A, cyclic AMP-responsive element-binding protein, and vascular endothelial growth factor axis. Clin Cancer Res 12:7294-7305.
    8. Mori, M., Y. Terui, M. Tanaka, H. Tomizuka, Y. Mishima, M. Ikeda, T. Kasahara, M. Uwai, M. Ueda, R. Inoue, T. Itoh, M. Yamada, H. Hayasawa, Y. Furukawa, Y. Ishizaka, K. Ozawa, and K. Hatake. 2001. Antitumor effect of beta2-microglobulin in leukemic cell-bearing mice via apoptosis-inducing activity: activation of caspase-3 and nuclear factor-kappaB. Cancer Res 61:4414-4417.
    9. Min, R., Z. Li, J. Epstein, B. Barlogie, and Q. Yi. 2002. Beta(2)-microglobulin as a negative growth regulator of myeloma cells. Br J Haematol 118:495-505.
    10. Gordon, J., C. H. Wu, M. Rastegar, and A. R. Safa. 2003. Beta2-microglobulin induces caspase-dependent apoptosis in the CCRF-HSB-2 human leukemia cell line independently of the caspase-3, -8 and -9 pathways but through increased reactive oxygen species. Int J Cancer 103:316-327.
    11. Zhau, H. E., V. Odero-Marah, H. W. Lue, T. Nomura, R. Wang, G. Chu, Z. R. Liu, B. P. Zhou, W. C. Huang, and L. W. Chung. 2008. Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model. Clin Exp Metastasis 25:601-610.
    12. Cher, M. L., D. A. Towler, S. Rafii, D. Rowley, H. J. Donahue, E. Keller, M. Herlyn, E. A. Cho, and L. W. Chung. 2006. Cancer interaction with the bone microenvironment: a workshop of the National Institutes of Health Tumor Microenvironment Study Section. Am J Pathol 168:1405-1412.
    13. Yang, J., J. Qian, M. Wezeman, S. Wang, P. Lin, M. Wang, S. Yaccoby, L. W. Kwak, B. Barlogie, and Q. Yi. 2006. Targeting beta2-microglobulin for induction of tumor apoptosis in human hematological malignancies. Cancer Cell 10:295-307.
    14. Yang, J., X. Zhang, J. Wang, J. Qian, L. Zhang, M. Wang, L. W. Kwak, and Q. Yi. 2007. Anti beta2-microglobulin monoclonal antibodies induce apoptosis in myeloma cells by recruiting MHC class I to and excluding growth and survival cytokine receptors from lipid rafts. Blood 110:3028-3035.
    15. Nomura, T., W. C. Huang, S. Seo, H. E. Zhau, H. Mimata, and L. W. Chung. 2007. Targeting beta2-microglobulin mediated signaling as a novel therapeutic approach for human renal cell carcinoma. J Urol 178:292-300.
    16. Freeman, M. R. 2007. Beta2 microglobulin: a surprising therapeutic target for prostate cancer and renal cell carcinoma. J Urol 178:10-11.
    17. Faderl, S., M. J. Keating, K. A. Do, S. Y. Liang, H. M. Kantarjian, S. O'Brien, G. Garcia-Manero, T. Manshouri, and M. Albitar. 2002. Expression profile of 11 proteins and their prognostic significance in patients with chronic lymphocytic leukemia (CLL). Leukemia 16:1045-1052.
    18. Bataille, R., B. G. Durie, and J. Grenier. 1983. Serum beta2 microglobulin and survival duration in multiple myeloma: a simple reliable marker for staging. Br J Haematol 55:439-447.
    19. Abdul, M., and N. Hoosein. 2000. Changes in beta-2 microglobulin expression in prostate cancer. Urol Oncol 5:168-172.
    20. Molica, S., D. Levato, N. Cascavilla, L. Levato, and P. Musto. 1999. Clinico-prognostic implications of simultaneous increased serum levels of soluble CD23 and beta2-microglobulin in B-cell chronic lymphocytic leukemia. Eur J Haematol 62:117-122.
    21. Bethea, M., and D. T. Forman. 1990. Beta 2-microglobulin: its significance and clinical usefulness. Ann Clin Lab Sci 20:163-168.
    22. Gatto, S., G. Ball, F. Onida, H. M. Kantarjian, E. H. Estey, and M. Beran. 2003. Contribution of beta-2 microglobulin levels to the prognostic stratification of survival in patients with myelodysplastic syndrome (MDS). Blood 102:1622-1625.
    23. Nissen, M. H., O. J. Bjerrum, T. Plesner, M. Wilken, and M. Rorth. 1987. Modification of beta-2-microglobulin in sera from patients with small cell lung cancer: evidence for involvement of a serine protease. Clin Exp Immunol 67:425-432.
    24. Wu, D., H. E. Zhau, W. C. Huang, S. Iqbal, F. K. Habib, O. Sartor, L. Cvitanovic, F. F. Marshall, Z. Xu, and L. W. Chung. 2007. cAMP-responsive element-binding protein regulates vascular endothelial growth factor expression: implication in human prostate cancer bone metastasis. Oncogene 26:5070-5077.
    25. Mori, M., Y. Terui, M. Ikeda, H. Tomizuka, M. Uwai, T. Kasahara, N. Kubota, T. Itoh, Y. Mishima, M. Douzono-Tanaka, M. Yamada, S. Shimamura, J. Kikuchi, Y. Furukawa, Y. Ishizaka, K. Ikeda, H. Mano, K. Ozawa, and K. Hatake. 1999. Beta(2)-microglobulin identified as an apoptosis-inducing factor and its characterization. Blood 94:2744-2753.
    26. Barnstable, C. J., W. F. Bodmer, G. Brown, G. Galfre, C. Milstein, A. F. Williams, and A. Ziegler. 1978. Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. Cell 14:9-20.
    27. Kovats, S., E. K. Main, C. Librach, M. Stubblebine, S. J. Fisher, and R. DeMars. 1990. A class I antigen, HLA-G, expressed in human trophoblasts. Science 248:220-223.
    28. Wang, X., B. Liang, V. Rebmann, J. Lu, E. Celis, T. Kageshita, H. Grosse-Wilde, and S. Ferrone. 2003. Specificity and functional characteristics of anti-HLA-A mAbs LGIII-147.4.1 and LGIII-220.6.2. Tissue Antigens 62:139-148.
    29. Rebai, N., and B. Malissen. 1983. Structural and genetic analyses of HLA class I molecules using monoclonal xenoantibodies. Tissue Antigens 22:107-117.
    30. Perosa, F., G. Luccarelli, M. Prete, E. Favoino, S. Ferrone, and F. Dammacco. 2003. Beta 2-microglobulin-free HLA class I heavy chain epitope mimicry by monoclonal antibody HC-10-specific peptide. J Immunol 171:1918-1926.
    31. Sernee, M. F., H. L. Ploegh, and D. J. Schust. 1998. Why certain antibodies cross-react with HLA-A and HLA-G: epitope mapping of two common MHC class I reagents. Mol Immunol 35:177-188.
    32. Stam, N. J., H. Spits, and H. L. Ploegh. 1986. Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J Immunol 137:2299-2306.
    33. Lampson, L. A., C. A. Fisher, and J. P. Whelan. 1983. Striking paucity of HLA-A, B, C and beta 2-microglobulin on human neuroblastoma cell lines. J Immunol 130:2471-2478.
    34. Wang, X., M. Campoli, H. S. Cho, T. Ogino, N. Bandoh, J. Shen, S. Y. Hur, T. Kageshita, and S. Ferrone. 2005. A method to generate antigen-specific mAb capable of staining formalin-fixed, paraffin-embedded tissue sections. J Immunol Methods 299:139-151.
    35. Ogino, T., X. Wang, S. Kato, N. Miyokawa, Y. Harabuchi, and S. Ferrone. 2003. Endoplasmic reticulum chaperone-specific monoclonal antibodies for flow cytometry and immunohistochemical staining. Tissue Antigens 62:385-393.
    36. Sakaguchi, K., R. Ono, M. Tsujisaki, P. Richiardi, A. Carbonara, M. S. Park, R. Tonai, P. I. Terasaki, and S. Ferrone. 1988. Anti-HLA-B7,B27,Bw42,Bw54,Bw55,Bw56, Bw67,Bw73 monoclonal antibodies: specificity, idiotypes, and application for a double determinant immunoassay. Hum Immunol 21:193-207.
    37. Quaranta, V., L. E. Walker, M. A. Pellegrino, and S. Ferrone. 1980. Purification of immunologically functional subsets of human Ia-like antigens on a monoclonal antibody (Q5/13) immunoadsorbent. J Immunol 125:1421-1425.
    38. Kusama, M., T. Kageshita, Z. J. Chen, and S. Ferrone. 1989. Characterization of syngeneic antiidiotypic monoclonal antibodies to murine anti-human high molecular weight melanoma-associated antigen monoclonal antibodies. J Immunol 143:3844-3852.
    39. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254.
    40. Boyum, A. 1968. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 97:77-89.
    41. Boyum, A. 1968. Isolation of leucocytes from human blood. Further observations. Methylcellulose, dextran, and ficoll as erythrocyteaggregating agents. Scand J Clin Lab Invest Suppl 97:31-50.
    42. Boyum, A. 1976. Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol Suppl 5:9-15.
    43. Nachlas, M. M., S. I. Margulies, J. D. Goldberg, and A. M. Seligman. 1960. The determination of lactic dehydrogenase with a tetrazolium salt. Anal Biochem 1:317-326.
    44. Korzeniewski, C., and D. M. Callewaert. 1983. An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64:313-320.
    45. Decker, T., and M. L. Lohmann-Matthes. 1988. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115:61-69.
    46. Rosa, F., H. Berissi, J. Weissenbach, L. Maroteaux, M. Fellous, and M. Revel. 1983. The beta2-microglobulin mRNA in human Daudi cells has a mutated initiation codon but is still inducible by interferon. EMBO J 2:239-243.
    47. Bicknell, D. C., A. Rowan, and W. F. Bodmer. 1994. Beta 2-microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors. Proc Natl Acad Sci U S A 91:4751-4755.
    48. Chang, C. C., T. Ogino, D. W. Mullins, J. L. Oliver, G. V. Yamshchikov, N. Bandoh, C. L. Slingluff, Jr., and S. Ferrone. 2006. Defective human leukocyte antigen class I-associated antigen presentation caused by a novel beta2-microglobulin loss-of-function in melanoma cells. J Biol Chem 281:18763-18773.
    49. Karre, K. 1993. Natural killer cells and the MHC class I pathway of peptide presentation. Semin Immunol 5:127-145.
    50. Borrego, F. 2006. The first molecular basis of the "missing self" hypothesis. J Immunol 177:5759-5760.
    51. Chang, C. C., and S. Ferrone. 2006. NK cell activating ligands on human malignant cells: molecular and functional defects and potential clinical relevance. Semin Cancer Biol 16:383-392.
    52. Seliger, B., T. Cabrera, F. Garrido, and S. Ferrone. 2002. HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 12:3-13.
    53. Marincola, F. M., E. M. Jaffee, D. J. Hicklin, and S. Ferrone. 2000. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181-273.
    54. Hsieh, C. H., Y. J. Hsu, C. C. Chang, H. C. Liu, K. L. Chuang, C. K. Chuang, S. T. Pang, K. Hasumi, S. Ferrone, and S. K. Liao. 2009. Total HLA class I loss in a sarcomatoid renal carcinoma cell line caused by the coexistence of distinct mutations in the two encoding beta2-microglobulin genes. Cancer Immunol Immunother 58:395-408.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE