研究生: |
喻詩維 Yu, Shih-Wei |
---|---|
論文名稱: |
The Effect of higher-κ Lanthanum Titanate capping on HfO2 gate oxide via Atomic Layer Deposition 以原子層化學氣相沈積鍍製高介電鈦酸鑭薄膜與覆蓋於二氧化鉿閘極氧化層之影響 |
指導教授: |
吳泰伯
Wu, Tai-Bor |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 85 |
中文關鍵詞: | High-k 、閘極氧化層 、二氧化鉿 、三氧化二鑭 、鈦酸鑭 、等效界面層厚度 、介電常數 |
外文關鍵詞: | High-k, Gate Oxide, Hafnium oxide, Lanthanum oxide, Lanthanum Titanate, Effective oxide thickness, Dielectric |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Abstract
High-κ materials have attracted great attention for their applications in nano-scaled CMOS structures and memory. However, with the trend of scaling down in International Technology Roadmap for Semiconductors (ITRS), seeking for higher-κ dielectric oxides will be the key to meet the requirement for 22 nm and 15 nm node of CMOS technology.
Lanthanum titanate (LTO) had been reported to have high dielectric constant and high crystallization temperature, which is taking the merit of TiO2 in high permittivity and La2O3 in thermal stability. Thus the higher-κ dielectric LTO is expected to have its potential in future high-κ dielectric.
The LTO films is deposited on HfO2 in stacks structure via atomic layer deposition (ALD) technique in this study. The precursor systems used for deposition of lanthanum titanates were Tetrakis(dimethylamino) Titanium (TDMAT) + water and tris(N-N’-diisopropylformamidinato) Lanthanum (La(iPr2-FMD)3) + oxygen plasma. The electrical characteristics were measured in C-V and I-V relations, and the microstructure of thin films was inspected by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray reflectivity (XRR) and X-ray photoelectron spectroscopy (XPS).
The LTO film is observed to diffuse in HfO2 through heat treatment, and yield in a new high-κ material which exhibits better properties than traditional HfO2 thin film and displays higher permittivity of 34.5 and lower equivalent oxide thickness (EOT) of 0.69 nm with a low leakage current of 10-2 A/cm2.
[1] Gordon E. Moore, "Lithography and the future of Moore's law," Proc. SPIE, 2438, 2-17, 1995.
[2] G.E. Moore, "No exponential is forever: but "Forever" can be delayed! [semiconductor industry]," Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International 1, 20-23, 2003.
[3] S. P. Tang, R. M. Wallace, A. Seabaugh, and D. King-Smith, "Evaluating the minimum thickness of gate oxide on silicon using first-principles method," Applied Surface Science, 135, 1-4, 137-142, 1998.
[4] C. Kaneta, T. Yamasaki, T. Uchiyama, T. Uda, and K. Terakura, "Structure and electronic property of Si(100)/SiO2 interface," Microelectronic Engineering, 48, 1-4, 117-120, 1999.
[5] D. A. Muller, "The Electronic struture at the atomic scale of ultra-thin gate oxides," Nature, 399, 758-761, 1999.
[6] K. Henson, H. Bu, M. H. Na, Y. Liang, U. Kwon, S. Krishnan, J. Schaeffera, R. Jha, N. Moumen, R. Carterb, C. DeWan, R. Donaton, D. Guo, M. Hargroveb, W. He, R. Mo, R. Ramachandran, K. Ramanib, K. Schonenberg, Y. Tsangb, X. Wang, M. Gribelyuk, W. Yan, J. Shepard, E. Cartierc, M. Frankc, E. Harley, R. Arndt, R. Knarr, T. Bailey, B. Zhang, K. Wong, T. Graves-Abe, E. Luckowskia, D-G. Parkc, V. Narayananc, M. Chudzik, M. Khare, "Gate length scaling and high drive currents enabled for high performance SOI technology using high-κ/metal gate," IEDM Tech. Dig., 645-648, 2009.
[7] R. Chau, "Gate Dielectric Scaling for High-Performance CMOS: from SiO2/PolySi to High-k/Metal-Gate" [Online]. Available: http://www.intel.com/technology/silicon/IWGI_2003_Robert_Chau_Intel.pdf
[8] SEMATECH. [Online]. Available: http://www.sematech.org/
[9] Semiconductor Industry Association. "International Technology Roadmap for Semiconductors 2009 Edition" [Online]. Available: http://public.itrs.net/reports.html
[10] Intel Corporation. [Online]. Available: http://www.intel.com/technology/45nm/index.htm
[11] T. S. Boscke, P. Y. Hung, P. D. Kirsch, M. A. Quevedo-Lopez, and R. Ramirez-Bon, "Increasing permittivity in HfZrO thin films by surface manipulation," Applied Physics Letters, 95, 5, 2009.
[12] K. Kita, K. Kyuno, and A. Toriumi, "Permittivity increase of yttrium-doped HfO2 through structural phase transformation," Applied Physics Letters, 86, 10, 2005.
[13] P. Majumder, G. Jursich, and C. Takoudis, "Structural phase transformation of Y2O3 doped HfO2 films grown on Si using atomic layer deposition," Journal of Applied Physics, 105, 10, 2009.
[14] J. Niinisto, K. Kukli, T. Sajavaara, M. Ritala, M. Leskela, L. Oberbeck, J. Sundqvist, and U. Schroder, "Atomic Layer Deposition of High-Permittivity Yttrium-Doped HfO2 Films," Electrochemical and Solid State Letters, 12, 1, G1-G4, 2009.
[15] K. Tomida, K. Kita, and A. Toriumi, "Dielectric constant enhancement due to Si incorporation into HfO2," Applied Physics Letters, 89, 14, 2006.
[16] T. Wang,J. G. Ekerdt, "Atomic Layer Deposition of Lanthanum Stabilized Amorphous Hafnium Oxide Thin Films," Chemistry of Materials, 21, 14, 3096-3101, 2009.
[17] Akira Toriumi, Koji Kita, and and Yoshiki Yamamoto Kazuyuki Tomida, "Doped HfO2 for Higher-k Dielectrics," ECS Transacitions, 1, 5, 185-197, 2005.
[18] A. Toriumi, K. Kita, K. Tomida, and J. Widiez Y. Zhao, T. Nabatame, H. Ota and M. Hirose, "Materials Science-based Device Performance Engineering for Metal Gate High-k CMOS," IEDM Tech. Dig., 53-56, 2007.
[19] T.S. Boscke, S. Govindarajan, and C.; Heitmann ; Fachmann, J.; Avellan, A.; Schroder, U.; Kudelka, S.; Kirsch, P.D.; Krug, C.; Hung, P.Y.; Song, S.C.; Ju, B.S.; Price, J.; Pant, G.; Gnade, B.E.; Krautschneider, W.; Lee, B.-H.; Jammy, R, "Tetragonal Phase Stabilization by Doping as an Enabler of Thermally Stable HfO2 based MIM and MIS Capacitors for sub 50 nm Deep Trench DRAM," Electron Devices Meeting, 2006. IEDM '06. International 2006.
[20] M. I. Medina-Montes, M. V. Selvidge, A. Herrera-Gomez, F. S. Aguirre-Tostado, M. A. Quevedo-Lopez, and R. M. Wallace, "Thermal stability of lanthanum in hafnium-based gate stacks," Journal of Applied Physics, 106, 5, 2009.
[21] C. H. Liu, H. W. Chen, S. Y. Chen, H. S. Huang, and L. W. Cheng, "Current conduction of 0.72 nm equivalent-oxide-thickness LaO/HfO2 stacked gate dielectrics," Applied Physics Letters, 95, 1, 2009.
[22] J. Robertson, "High dielectric constant gate oxides for metal oxide Si transistors," Reports on Progress in Physics, 69, 2, 327-396, 2006.
[23] T. Busani,R. A. B. Devine, "Molecular volume and electronic and vibrational polarizibilities for amorphous LaAlO3," Journal of Applied Physics, 96, 11, 6642-6647, 2004.
[24] P. Sivasubramani, J. Kim, M. J. Kim, B. E. Gnade, and R. M. Wallace, "Effect of nitrogen incorporation on the thermal stability of sputter deposited lanthanum aluminate dielectrics on Si (100)," Applied Physics Letters, 89, 15, 2006.
[25] X. B. Lu, H. B. Lu, Z. H. Chen, X. Zhang, R. Huang, H. W. Zhou, X. P. Wang, B. Y. Nguyen, C. Z. Wang, W. F. Xiang, M. He, and B. L. Cheng, "Field-effect transistors with LaAlO3 and LaAlOxNy gate dielectrics deposited by laser molecular-beam epitaxy," Applied Physics Letters, 85, 16, 3543-3545, 2004.
[26] D. H. Triyoso, R. I. Hegde, S. Zollner, M. E. Ramon, S. Kalpat, R. Gregory, X. D. Wang, J. Jiang, M. Raymond, R. Rai, D. Werho, D. Roan, B. E. White, and P. J. Tobin, "Impact of titanium addition on film characteristics of HfO2 gate dielectrics deposited by atomic layer deposition," Journal of Applied Physics, 98, 5, 2005.
[27] V. V. Afanas'ev, A. Stesmans, F. Chen, M. Li, and S. A. Campbell, "Electrical conduction and band offsets in Si/HfxTi1-xO2/metal structures," Journal of Applied Physics, 95, 12, 7936-7939, 2004.
[28] J. Robertson, "Band offsets and work function control in field effect transistors," Journal of Vacuum Science & Technology B, 27, 1, 277-285, 2009.
[29] M. M. Frank, S. Kim, S. L. Brown, J. Bruley, M. Copel, M. Hopstaken, M. Chudzik, and V. Narayanan, "Scaling the MOSFET gate dielectric: From high-k to higher-k?," Microelectronic Engineering, 86, 7-9, 1603-1608, 2009.
[30] 張哲豪, "Atomic Layer Deposition of High-k Thin Films in Metal-Insulator-Semiconductor and Metal-Insulator-Metal Structures," 清華大學博士論文, 2007.
[31] Y. Zhao, M. Toyama, K. Kita, K. Kyuno, and A. Toriumi, "Moisture-absorption-induced permittivity deterioration and surface roughness enhancement of lanthanum oxide films on silicon," Applied Physics Letters, 88, 7, 2006.
[32] Y. J. Zhong, Feridoon Azough, and Rober Freer, "The Effect of La2Ti3O9 Second Phase on the Microstructure and Dielectric Properties of La2Ti2O7 Ceramics," Journal of the European Ceramic Society, 15, 9, 1995.
[33] S. D. Skapin, D. Kolar, and D. Suvorov, "Phase stability and equilibria in the La2O3-TiO2 system," Journal of the European Ceramic Society, 20, 8, 1179-1185, 2000.
[34] S. D. Skapin, S. Kunej, and D. Suvorov, "Phase relations and electrical properties in the pseudo-ternary La2O3-TiO2-Mn2O3 system in air," Journal of the European Ceramic Society, 28, 16, 3119-3124, 2008.
[35] S. C. Zhang, Z. J. Zheng, J. H. Wang, and J. M. Chen, "Heterogeneous photocatalytic decomposition of benzene on lanthanum-doped TiO2 film at ambient temperature," Chemosphere, 65, 11, 2282-2288, 2006.
[36] D. W. Hwang, J. S. Lee, W. Li, and S. H. Oh, "Electronic band structure and photocatalytic activity of Ln(2)Ti(2)O(7) (Ln = La, Pr, Nd)," Journal of Physical Chemistry B, 107, 21, 4963-4970, 2003.
[37] T. Ando, T. Wakamatsu, K. Masuda, N. Yoshida, K. Suzuki, S. Masutani, I. Katayama, H. Uchida, H. Hirose, and A. Kamimoto, "Photocatalytic behavior of heavy La-doped TiO2 films deposited by pulsed laser deposition using non-sintered target," Applied Surface Science, 255, 24, 9688-9690, 2009.
[38] V. V. Atuchin, T. A. Gavrilova, J. C. Grivel, and V. G. Kesler, "Electronic structure of layered ferroelectric high-k titanate La2Ti2O7," Journal of Physics D-Applied Physics, 42, 3, 2009.
[39] D. Fasquelle, J. C. Carru, L. Le Gendre, C. Le Paven, J. Pinel, F. Chevire, F. Tessier, and R. Marchand, "Lanthanum titanate ceramics: Electrical characterizations in large temperature and frequency ranges," Journal of the European Ceramic Society, 25, 12, 2085-2088, 2005.
[40] W. B. Chen,A. Chin, "Interfacial layer dependence on device property of high-kappa TiLaO Ge/Si N-type metal-oxide-semiconductor capacitors at small equivalent-oxide thickness," Applied Physics Letters, 95, 21, 2009.
[41] W. B. Chen,A. Chin, "High Performance of Ge nMOSFETs Using SiO2 Interfacial Layer and TiLaO Gate Dielectric," IEEE Electron Device Letters, 31, 1, 80-82, 2010.
[42] S. H. Lin, C. H. Cheng, W. B. Chen, F. S. Yeh, and A. Chin, "Low-Threshold-Voltage TaN/LaTiO n-MOSFETs With Small EOT," IEEE Electron Device Letters, 30, 9, 999-1001, 2009.
[43] C. H. Cheng, H. C. Pan, H. J. Yang, C. N. Hsiao, C. P. Chou, S. P. McAlister, and A. Chin, "Improved high-temperature leakage in high-density MIM capacitors by using a TiLaO dielectric and an Ir electrode," IEEE Electron Device Letters, 28, 12, 1095-1097, 2007.
[44] H. Hara, M. Yamato, and T. Kikkawa, "Properties of TiO2/LaxTi1-xOy/TiO2 Stacked Thin Films," Japanese Journal of Applied Physics, 48, 10, 2009.
[45] T. Aaltonen, M. Alnes, O. Nilsen, L. Costelle, and H. Fjellvag, "Lanthanum titanate and lithium lanthanum titanate thin films grown by atomic layer deposition," Journal of Materials Chemistry, 20, 14, 2877-2881, 2010.
[46] Institute of Semiconductor and Solid State Physics, Austria. [Online]. Available: http://www.hlphys.jku.at/fkphys/epitaxy/mbe.html
[47] Helsinki University of Technology. [Online]. Available: http://www.tkk.fi/Units/AES/projects/prlaser/pld.htm
[48] S. M. George, "Atomic Layer Deposition: An Overview," Chemical Reviews, 110, 1, 111-131, 2010.
[49] Xinye Liu, Sasangan Ramanathan, and Anuranjan Srivastava Ana Longdergan, Eddie Lee, Thomas E. Seidel, Jeffrey T. Barton, Dawen Pang, and Roy G. Gordon, "ALD of Hafnium Oxide Thin Films from Tetrakis(ethylmethylamino)hafnium and Ozone," Journal of the Electrochemical Society, 152, 5, G213-G219, 2005.
[50] 侯承浩, "Atomic Layer Deposition of High-k Gate Dielectrics on Silicon and Indium Antimonide," 清華大學博士論文, 2009.
[51] Nanodevice Laboratory. [Online]. Available: http://npl.postech.ac.kr/?mid=topic_nanopattern
[52] 陳眉君, "Interfacial Cleaning Effects of ALD-Al2O3 on Passivating InSb in MOSFET Application," 清華大學碩士論文, 2008.
[53] Rigaku Americas Corporation. [Online]. Available: http://www.rigaku.com/xrd/ttrax.html
[54] J. J. Gallegos, D. H. Triyoso, and M. Raymond, "X-ray metrology for high-k atomic layer deposited HfxZr1-xO2 films," Microelectronic Engineering, 85, 1, 49-53, 2008.
[55] J. R. Hauser,and K. Ahmed, "Characterization of ultra-thin oxides using electrical C-V and I-V measurements," Characterization and Metrology for ULSI Technology International, AIP Conference Proceeding, 449, 235, 1998.
[56] Q. Xie, J. Musschoot, D. Deduytsche, R. L. Van Meirhaeghe, C. Detavernier, S. Van den Berghe, Y. L. Jiang, G. P. Ru, B. Z. Li, and X. P. Qu, "Growth kinetics and crystallization behavior of TiO2 films prepared by plasma enhanced atomic layer deposition," Journal of the Electrochemical Society, 155, 9, H688-H692, 2008.
[57] A. Borras, J. Cotrino, and A. R. Gonzalez-Elipe, "Type of Plasmas and microstructures of TiO2 thin films prepared by plasma enhanced chemical vapor deposition," Journal of the Electrochemical Society, 154, 12, P152-P157, 2007.
[58] 鍾維修, "Process and Material Properties of La2O3, HfO2 and La-Hf-O Prepared by Atomic Layer Deposition," 清華大學碩士論文, 2009.
[59] K. Kita,A. Toriumi, "Origin of electric dipoles formed at high-k/SiO2 interface," Applied Physics Letters, 94, 13, 2009.
[60] Y. H. Kim,J. C. Lee, "Reliability characteristics of high-k, dielectrics," Microelectronics Reliability, 44, 2, 183-193, 2004.
[61] P. Fiorenza, R. Lo Nigro, V. Raineri, and D. Salinas, "Breakdown kinetics at nanometer scale of innovative MOS devices by conductive atomic force microscopy," Microelectronic Engineering, 84, 3, 441-445, 2007.
[62] 邱彥凱, "Atomic Layer Deposition of High-k Thin Films used for Metal-Oxide-Semiconductor and Metal-Insulator-Metal application," 清華大學博士論文, 2007.
[63] H. Park, M. S. Rahman, M. Chang, B. H. Lee, R. Choi, C. D. Young, and H. Hwang, "Improved interface quality and charge-trapping characteristics of MOSFETs with high-k gate dielectric," IEEE Electron Device Letters, 26, 10, 725-727, 2005.
[64] N. Umezawa, K. Shiraishi, S. Sugino, A. Tachibana, K. Ohmori, K. Kakushima, H. Iwai, T. Chikyow, T. Ohno, Y. Nara, and K. Yamada, "Suppression of oxygen vacancy formation in Hf-based high-k dielectrics by lanthanum incorporation," Applied Physics Letters, 91, 13, 2007.
[65] S. J. Rhee, F. Zhu, H. S. Kim, C. H. Choi, C. Y. Kang, M. H. Zhang, T. Lee, I. Ok, S. A. Krishnan, and J. C. Lee, "Hafnium titanate bilayer structure multimetal dielectric nMOSCAPs," IEEE Electron Device Letters, 27, 4, 225-227, 2006.
[66] W. J. Maeng, W. H. Kim, and H. Kim, "Flat band voltage (Vfb) modulation by controlling compositional depth profile in La2O3/HfO2 nanolaminate gate oxide," Journal of Applied Physics, 107, 7, 2010.
[67] E.P. Gusev, D.A. Buchanan, E. Cartier, A. Kurnar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P.C. Jamison, D.A. Neumayer, M. Copel, M.A. Gribelyuk, H. Okom-Schmidt, C. D'Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L-A. Ragnarsson, P. Ronsheim, K. Rim, R. J. Fleming, and A. Mocuta and A. Ajmera, "Ultrathin high-k gate stacks for advanced CMOS devices," IEDM Tech. Dig., 451, 2001.
[68] A. Delabie, G. Pourtois, M. Caymax, S. De Gendt, L. A. Ragnarsson, M. Heyns, Y. Fedorenko, J. Swerts, and J. W. Maes, "Atomic layer deposition of hafnium silicate gate dielectric layers," Journal of Vacuum Science & Technology A, 25, 4, 1302-1308, 2007.
[69] J. Swerts, N. Peys, L. Nyns, A. Delabie, A. Franquet, J. W. Maes, S. Van Elshocht, and S. De Gendt, "Impact of Precursor Chemistry and Process Conditions on the Scalability of ALD HfO2 Gate Dielectrics," Journal of the Electrochemical Society, 157, 1, G26-G31, 2010.