研究生: |
陳信諺 Chen, Shin-Yan |
---|---|
論文名稱: |
鋰離子電池之循環式逐步應力衰變試驗的設計與分析 Design and Analysis of Type-III Step-Stress Degradation Test for Lithium-Ion Batteries |
指導教授: |
曾勝滄
Tseng, Sheng-Tsiang |
口試委員: |
徐南蓉
Hsu, Nan-Jung 汪上曉 Wong, Shang-Hsiao 李水彬 Lee, Shui-Pin |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 鋰離子電池 、電池壽命預測 、加速衰變試驗 、趨勢更新過程 、SS_ATRP模型 |
外文關鍵詞: | lithium-ion batteries, end of performance (EOP), accelerated degradation test, trend renewal process (TRP), SS_ATRP model |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
可進行重複充放電的鋰離子電池 (rechargeable lithium-ion batteries) 是可攜式電子產品中做為電源供應之不可或缺的角色。然而,鋰離子電池為高可靠度產品,意謂其衰變速度極為緩慢,因此如何精確推估鋰離子電池之壽命,對製造商而言是個十分重要的研究課題。過去針對高可靠度產品多是以固定應力加速衰變試驗進行分析,惟此方法的實驗成本通常相當昂貴。為彌補此缺點,本研究採用循環式逐步應力衰變試驗來收集鋰離子電池實驗資料,並以常用的逐步應力衰變模型 (如SS_ADT以及TSS_ATRP的模型) 為基礎,提出SS_ATRP模型來針對循環式逐步應力衰變試驗的資料進行分析,並使用最大概似估計法 (maximum likelihood estimation) 求出模型中的參數估計值以及預測正常使用狀況下之電池壽命EOP (end of performance),配合有母數拔靴法 (parametric bootstrap) 計算其95% 信賴區間。最後則使用此實驗資料來推估鋰離子電池的平均失效壽命 (mean time to failure) 以及提出本研究的發展性。
Rechargeable lithium-ion batteries play an essential role as power supplies in portable electronic products. Due to its high reliability, the lifetime assessment for lithium-ion batteries is a challenging research topic. To address this issue, highly reliable products were often analyzed via constant stress accelerated degradation tests in practice. However, implementing such experiments is high-cost in general. To compensate for this shortcoming, this study designed a Type-III step-stress degradation test to collect the experimental data of lithium-ion batteries, in which different stresses are arranged in a cycle fashion. Adopting the ideas of SS_ADT, ATRP, and TSS_ATRP model, an SS_ATRP model is then proposed for analyzing the data collected from the Type-III step-stress degradation test. For inference, the maximum likelihood estimation is used for model fitting, under which the end-of-performance (EOP) of lithium-ion batteries is predicted at normal use conditions. The proposed methodologies are applied to the collected Type-III step-stress degradation test data for assessing the mean-time-to-failure (MTTF) of lithium-ion batteries. Finally, some possible extensions of this study are addressed.
1. Zhang, J., & Lee, J. (2011). A review on prognostics and health monitoring of Li-ion battery. Journal of Power Sources, 196(15), 6007-6014.
2. He, W., Williard, N., Osterman, M., & Pecht, M. (2011). Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 196(23), 10314-10321.
3. Micea, M. V., Ungurean, L., Carstoiu, G. N., & Groza, V. (2011). Online state-of-health assessment for battery management systems. IEEE Transactions on Instrumentation and Measurement, 60(6), 1997-2006.
4. Lindqvist, B. H., Elvebakk, G., & Heggland, K. (2003). The trend-renewal process for statistical analysis of repairable systems. Technometrics, 45(1), 31-44.
5. Wang, Y. F., Tseng, S. T., Lindqvist, B. H., & Tsui, K. L. (2019). End of performance prediction of lithium-ion batteries. Journal of Quality Technology, 51(2), 198-213.
6. Tseng, S. T., & Wen, Z. C. (2000). Step-stress accelerated degradation analysis for highly reliable products. Journal of Quality Technology, 32(3), 209-216.
7. DiCiccio, T. J. and Efron, B. (1996). Bootstrap confidence intervals. Statistical Science 11(3), 189-212.
8. Meeker, W. Q. & Escobar, L. A. (1998) Statistical Methods for Reliability Data, John Wiley and Sons, New York.
9. Nelson, W. (1990), Accelerated Testing: Statistical Models, Test Plans, and Data Analyses, John Wiley and Sons, New York.
10. Ross, S. M. (2019). Introduction to Probability Models. 〖12〗^th Edition, Academic Press, New York.
11. 吳璟賢 (2016), "電池壽命的EOP推論及其最式實驗配置問題", 國立清華大學統計學研究所碩士論文。
12. 劉軒彤 (2017), "TRP隨機效應模型之建構與應用", 國立清華大學統計學研究所碩士論文。
13. 林立元 (2020), "可回充電池的逐步應力衰變試驗之建模與分析", 國立清華大學統計學研究所碩士論文。
14. 沈子翔 (2011), "可回充電池的實驗設計與分析", 國立清華大學統計學研究所碩士論文。